Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local calcium transients regulate the spontaneous motility of dendritic filopodia

Abstract

During development, dendrites, and in particular dendritic filopodia, undergo extensive structural remodeling, presumably to help establish synaptic contacts. Here, we investigated the role of calcium signaling in dendritic plasticity by simultaneously recording calcium dynamics and filopodial growth in rat hippocampal slice cultures. Local calcium transients occurred in dendritic filopodia and shafts, often at putative synaptic sites. These events were highly correlated with filopodial motility: comparatively rare when individual filopodia emerged from the dendrite, they became more frequent after filopodia started growing, finally causing them to halt. Accordingly, an experimental reduction of the frequency of local calcium transients elicited filopodial growth and, conversely, calcium uncaging reduced filopodial motility. Our observations suggest that low levels of local calcium transients facilitate filopodial outgrowth, whereas high levels inhibit the formation of filopodia and stabilize newly formed ones. This process may facilitate synapse formation and may serve as a homeostatic mechanism distributing synapses evenly along developing dendrites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local and global calcium transients occur in dendrites of developing hippocampal neurons.
Figure 2: Most dendritic calcium transients occur near synapses.
Figure 3: Local calcium transients are generated in filopodia and transmitted to the dendritic shaft.
Figure 4: Filopodial growth and calcium dynamics are correlated.
Figure 5: Uncaging of calcium in dendrites blocks filopodial motility.
Figure 6: Blockade of local calcium transients induces filopodial growth.

Similar content being viewed by others

References

  1. Wong, W.T. & Wong, R.O. Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol. 10, 118–124 (2000).

    CAS  PubMed  Google Scholar 

  2. Dunaevsky, A. & Mason, C.A. Spine motility: a means towards an end? Trends Neurosci. 26, 155–160 (2003).

    CAS  PubMed  Google Scholar 

  3. Harris, K.M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    CAS  PubMed  Google Scholar 

  4. Jontes, J.D. & Smith, S.J. Filopodia, spines, and the generation of synaptic diversity. Neuron 27, 11–14 (2000).

    CAS  PubMed  Google Scholar 

  5. Meberg, P.J., Kossel, A.H., Williams, C.V. & Kater, S.B. Calcium-dependent alterations in dendritic architecture of hippocampal pyramidal neurons. Neuroreport 10, 639–644 (1999).

    CAS  PubMed  Google Scholar 

  6. Wu, G.Y., Deisseroth, K. & Tsien, R.W. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151–158 (2001).

    CAS  PubMed  Google Scholar 

  7. Lohmann, C., Myhr, K.L. & Wong, R.O. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181 (2002).

    CAS  PubMed  Google Scholar 

  8. Ciccolini, F. et al. Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation. J. Neurosci. 23, 103–111 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brunig, I., Kaech, S., Brinkhaus, H., Oertner, T.G. & Matus, A. Influx of extracellular calcium regulates actin-dependent morphological plasticity in dendritic spines. Neuropharmacology 47, 669–676 (2004).

    CAS  PubMed  Google Scholar 

  10. Fink, C.C. et al. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283–297 (2003).

    CAS  PubMed  Google Scholar 

  11. Portera-Cailliau, C., Pan, D.T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jourdain, P., Fukunaga, K. & Muller, D. Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci. 23, 10645–10649 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Korkotian, E. & Segal, M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 96, 12068–12072 (1999).

    CAS  PubMed  Google Scholar 

  14. Korkotian, E. & Segal, M. Regulation of dendritic spine motility in cultured hippocampal neurons. J. Neurosci. 21, 6115–6124 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Koizumi, S. et al. Characterization of elementary Ca2+ release signals in NGF- differentiated PC12 cells and hippocampal neurons. Neuron 22, 125–137 (1999).

    CAS  PubMed  Google Scholar 

  16. Dailey, M.E., Buchanan, J., Bergles, D.E. & Smith, S.J. Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. J. Neurosci. 14, 1060–1078 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dailey, M.E. & Smith, S.J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236 (1998).

    CAS  Google Scholar 

  20. Missiaen, L., Callewaert, G., De Smedt, H. & Parys, J.B. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29, 111–116 (2001).

    CAS  PubMed  Google Scholar 

  21. Bootman, M.D. et al. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J. 16, 1145–1150 (2002).

    CAS  PubMed  Google Scholar 

  22. Capogna, M., Volynski, K.E., Emptage, N.J. & Ushkaryov, Y.A. The α-latrotoxin mutant LTXN4C enhances spontaneous and evoked transmitter release in CA3 pyramidal neurons. J. Neurosci. 23, 4044–4053 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Steward, O. & Falk, P.M. Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J. Comp. Neurol. 314, 545–557 (1991).

    CAS  PubMed  Google Scholar 

  24. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Galarsa, J-L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).

    CAS  Google Scholar 

  25. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hennou, S., Khalilov, I., Diabira, D., Ben-Ari, Y. & Gozlan, H. Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur. J. Neurosci. 16, 197–208 (2002).

    PubMed  Google Scholar 

  27. Schuster, T. et al. Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, β1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J. Neurobiol. 49, 142–158 (2001).

    CAS  PubMed  Google Scholar 

  28. Spitzer, N.C. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J. Physiol. (Paris) 96, 73–80 (2002).

    CAS  Google Scholar 

  29. Kang, H. & Schuman, E.M. Intracellular Ca2+ signaling is required for neurotrophin-induced potentiation in the adult rat hippocampus. Neurosci. Lett. 282, 141–144 (2000).

    CAS  PubMed  Google Scholar 

  30. Zhang, S. & Murphy, T.H. Ca2+-independent spine dynamics in cultured hippocampal neurons. Mol. Cell. Neurosci. 25, 334–344 (2004).

    PubMed  Google Scholar 

  31. Gomez, T.M., Robles, E., Poo, M. & Spitzer, N.C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    CAS  PubMed  Google Scholar 

  32. Robles, E., Huttenlocher, A. & Gomez, T.M. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron 38, 597–609 (2003).

    CAS  PubMed  Google Scholar 

  33. Ziv, N.E. & Smith, S.J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    CAS  PubMed  Google Scholar 

  34. Niell, C.M., Meyer, M.P. & Smith, S.J. In vivo imaging of synapse formation on a growing dendritic arbor. Nat. Neurosci. 7, 254–260 (2004).

    CAS  PubMed  Google Scholar 

  35. Stoppini, L., Buchs, P.-A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci.Meth. 37, 173–182 (1991).

    CAS  Google Scholar 

  36. Kettunen, P. et al. Imaging calcium dynamics in the nervous system by means of ballistic delivery of indicators. J. Neurosci. Meth. 119, 37 (2002).

    CAS  Google Scholar 

  37. O'Brien, J.A., Holt, M., Whiteside, G., Lummis, S.C.R. & Hastings, M.H. Modifications to the hand-held Gene Gun: improvements for in vitro Biolistic transfection of organotypic neuronal tissue. J. Neurosci. Methods 112, 57–64 (2001).

    CAS  PubMed  Google Scholar 

  38. Haas, K., Sin, W.C., Javaherian, A., Li, Z. & Cline, H.T. Single-cell electroporation for gene transfer in vivo. Neuron 29, 583–591 (2001).

    CAS  PubMed  Google Scholar 

  39. Engert, F. & Bonhoeffer, T. Synapse specificity of long-term potentiation breaks down at short distances. Nature 388, 279–284 (1997).

    CAS  PubMed  Google Scholar 

  40. Veselovsky, N.S., Engert, F. & Lux, H.D. Fast local superfusion technique. Pflugers Arch. 432, 351–354 (1996).

    CAS  PubMed  Google Scholar 

  41. Diggle, P.J. Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. J. Neurosci. Methods 18, 115–125 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Siegel for performing data analysis; O. Momoh and N. Stöhr for preparation and maintenance of slice cultures; S. Eglen for help with the Monte Carlo statistics; and R. Wong and M. Hübener for critically reading the manuscript. This work was supported by the Max-Planck-Gesellschaft and the Schloessmann Foundation (C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lohmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Model for the regulation of filopodial growth by local calcium transients. (PDF 547 kb)

Supplementary Video 1

Local and global calcium transients. Local and global calcium transients in dendrites of a CA3 pyramidal neuron (real time). (MOV 614 kb)

Supplementary Video 2

Filopodial calcium transients. Three consecutive calcium transients are generated in a filopodium and spread into the dendritic shaft with some delay (3 x faster than real time). (MOV 408 kb)

Supplementary Video 3

Filopodial growth and calcium transients. Two filopodia grow during this recording. Calcium transients in the parent dendrite can be seen after the onset of growth, but not before (30 x faster than real time). (MOV 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, C., Finski, A. & Bonhoeffer, T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci 8, 305–312 (2005). https://doi.org/10.1038/nn1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing