Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain

Abstract

How the brain represents different aspects of faces remains controversial. Here we presented subjects with stimuli drawn from morph continua between pairs of famous faces. In the paired presentations, a second face could be identical to the first, could share perceived identity but differ physically (30% along the morph continuum), or could differ physically by the same distance along the continuum (30%) but in the other direction. We show that, behaviorally, subjects are more likely to classify face pairs in the third paired presentation as different and that this effect is more pronounced for subjects who are more familiar with the faces. In functional magnetic resonance imaging (fMRI), inferior occipital gyrus (IOG) shows sensitivity to physical rather than to identity changes, whereas right fusiform gyrus (FFG) shows sensitivity to identity rather than to physical changes. Bilateral anterior temporal regions show sensitivity to identity change that varies with the subjects' pre-experimental familiarity with the faces. These findings provide neurobiological support for a hierarchical model of face perception.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example stimuli and behavioral results.
Figure 2: Physical change and identity change in fMRI results.
Figure 3: Correlation of self-rated familiarity with identity change effect.

Similar content being viewed by others

References

  1. Posamentier, M.T. & Abdi, H. Processing faces and facial expressions. Neuropsychol. Rev. 13, 113–143 (2003).

    Article  Google Scholar 

  2. Farah, M.J., Wilson, K.D., Drain, M. & Tanaka, J.N. What is 'special' about face perception? Psychol. Rev. 105, 482–498 (1998).

    Article  CAS  Google Scholar 

  3. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  4. Malach, R., Levy, I. & Hasson, U. The topographic of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Article  Google Scholar 

  5. Haxby, J.V., Hoffman, E.A. & Gobbini, M.I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    Article  CAS  Google Scholar 

  6. Leonard, C.M., Rolls, E.T., Wilson, F.A. & Baylis, G.C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159–176 (1985).

    Article  CAS  Google Scholar 

  7. Ishai, A., Haxby, J.V. & Ungerleider, L.G. Visual imagery of famous faces: effects of memory and attention revealed by fMRI. NeuroImage 17, 1729–1741 (2002).

    Article  Google Scholar 

  8. Rajah, M.N., McIntosh, A.R. & Grady, C.L. Frontotemporal interactions in face encoding and recognition. Brain Res. Cogn Brain Res. 8, 259–269 (1999).

    Article  CAS  Google Scholar 

  9. Seeck, M. et al. Intracranial neurophysiological correlates related to the processing of faces. Epilepsy Behav. 2, 545–557 (2001).

    Article  CAS  Google Scholar 

  10. Perrett, D., Rolls, E.T. & Caan, W. Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982).

    Article  CAS  Google Scholar 

  11. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological studies of human face perception. II. Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999).

    Article  CAS  Google Scholar 

  12. De Renzi, E. Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. Neuropsychologia 24, 385–389 (1986).

    Article  CAS  Google Scholar 

  13. Tranel, D., Damasio, H. & Damasio, A.R. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35, 1319–1327 (1997).

    Article  CAS  Google Scholar 

  14. Dolan, R. et al. How the brain learns to see objects and faces in an impoverished context. Nature 389, 596–569 (1997).

    Article  CAS  Google Scholar 

  15. Henson, R.N. et al. Electrophysiological and heamodynamic correlates of face perception, recognition and priming. Cereb. Cortex 13, 793–805 (2003).

    Article  CAS  Google Scholar 

  16. Beale, J.M. & Keil, F.C. Categorical effects in perception of faces. Cognition 57, 217–239 (1995).

    Article  CAS  Google Scholar 

  17. Nosofsky, R.M. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115, 39–61 (1986).

    Article  CAS  Google Scholar 

  18. Valentine, T. A unified account of the effects of distinctiveness, inversion and race in face recognition. Q. J. Exp. Psychol. A 43, 161–204 (1991).

    Article  CAS  Google Scholar 

  19. Harnad, S. Psychophysical and cognitive aspects of categorical perception. in Categorical Perception: The Ground of Cognition (ed. Harnad, S.) 1–25 (Cambridge Univ. Press, New York, 1987).

    Google Scholar 

  20. Campanella, S. et al. Right N170 modulation in a face discrimination task: an account for categorical perception of familiar faces. Psychophysiology 37, 796–806 (2000).

    Article  CAS  Google Scholar 

  21. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2000).

    Article  Google Scholar 

  22. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    Article  CAS  Google Scholar 

  23. Henson, R.N., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    Article  CAS  Google Scholar 

  24. Henson, R.N. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81 (2004)

    Article  Google Scholar 

  25. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The fusiform face area subserves face perception not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    Article  CAS  Google Scholar 

  26. de Gelder, B. & Rouw, R. Beyond localization: a dynamical dual route account of face recognition. Acta. Psychol. 107, 183–207 (2001).

    Article  CAS  Google Scholar 

  27. Bruce, V. & Young, A. Understanding face recognition. Br. J. Psychol. 77, 305–327 (1986).

    Article  Google Scholar 

  28. Gauthier, I. et al. The fusiform 'face area' is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 (2000).

    Article  CAS  Google Scholar 

  29. George, N. et al. Contrast polarity and face recognition in the human fusiform gyrus. Nat. Neurosci. 2, 574–580 (1999).

    Article  CAS  Google Scholar 

  30. Hasselmo, M.E., Rolls, E.T. & Baylis, G.C. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32, 203–218 (1989).

    Article  CAS  Google Scholar 

  31. Mundel, T. et al. Transient inability to distinguish between faces: electrophysiologic studies. J. Clin. Exp. Neuropsychol. 20, 102–110 (2003).

    Google Scholar 

  32. Winston, J.S., Henson, R.N., Fine-Goulden, M.R. & Dolan, R.J. fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004).

    Article  CAS  Google Scholar 

  33. Sirovich, L. & Kirby, M. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. 4, 519–524 (1987).

    Article  CAS  Google Scholar 

  34. Tanaka, J., Giles, M., Kremen, S. & Simon, V. Mapping attractor fields in face space: the atypicality bias in face recognition. Cognition 68, 199–220 (1998).

    Article  CAS  Google Scholar 

  35. Sigala, N. & Logothetis, N.K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002).

    Article  CAS  Google Scholar 

  36. Rolls, E.T., Treves, A., Tovee, M.J. & Panzeri, S. Information in the neuronal representation of individual stimuli in the primate temporal visual cortex. J. Comput. Neurosci. 4, 309–333 (1997).

    Article  CAS  Google Scholar 

  37. Gorno-Tempini, M.L. et al. The neural systems sustaining face and proper-name processing. Brain 121, 2103–2118 (1998).

    Article  Google Scholar 

  38. Leveroni, C.L. et al. Neural systems underlying the recognition of familiar and newly learned faces. J. Neurosci. 20, 878–886 (2000).

    Article  CAS  Google Scholar 

  39. Sugiura, M. et al. Activation reduction in anterior temporal cortices during repeated recognition of faces of personal acquaintances. NeuroImage 13, 877–890 (2001).

    Article  CAS  Google Scholar 

  40. Glosser, G., Salvucci, A.E. & Chiaravalloti, N.D. Naming and recognizing famous faces in temporal lobe epilepsy. Neurology 61, 81–86 (2003).

    Article  CAS  Google Scholar 

  41. Barton, J.J.S. & Cherkasova, M. face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology 61, 220–225 (2003).

    Article  Google Scholar 

  42. Winston, J.S., O'Doherty, J. & Dolan, R.J. Common and distinct neural response during direct and incidental processing of multiple facial emotions. NeuroImage 20, 84–97 (2003).

    Article  CAS  Google Scholar 

  43. Josephs, O., Deichmann, R. & Turner, R. Trajectory measurment and generalised reconstruction in rectilinear EPI. NeuroImage 11, S543 (2000).

    Article  Google Scholar 

  44. Deichmann, R., Gottfried, J.A. & Turner, R. Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19, 430–441 (2003).

    Article  CAS  Google Scholar 

  45. Friston, K.J., Williams, S.R., Howard, R., Frackowiak, R.S.J. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    Article  CAS  Google Scholar 

  46. Andersson, J.L., Hutton, C., Ashburner, J., Turner, R. & Friston, K.J. Modeling geometric deformations in EPI time series. NeuroImage 13, 903–919 (2001).

    Article  CAS  Google Scholar 

  47. Ashburner, J. & Friston, K.J. Nonlinear spatial normalization using basis function. Hum. Brain. Mapp. 7, 254–266 (1999).

    Article  CAS  Google Scholar 

  48. Penny, W. & Friston, K.J. Hierarchical models. in Human Brain Function II (eds. Frackowiak, R.S., Friston, K.J., Dolan, R. & Ashburner, J.) 851–863 (Elsevier Academic, 2003).

    Google Scholar 

  49. Friston, K.J. et al. Event-related fMRI: characterizing differential responses. NeuroImage 7, 30–40 (1998).

    Article  CAS  Google Scholar 

  50. Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C. & Worsley, K.J. Multisubject fMRI studies and conjunction analyses. NeuroImage 10, 385–396.

Download references

Acknowledgements

We thank J. Ashburner and A. Viaccoz for help with the stimuli. This work was carried out under a Programme Grant to R.J.D. from the Wellcome Trust. J.D., R.N.H and P.R. were also supported by the Wellcome Trust. Additional support came from the Human Frontier Science Program to A.T. and R.J.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Rotshtein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Identity classification experiment; further examples (JPG 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotshtein, P., Henson, R., Treves, A. et al. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat Neurosci 8, 107–113 (2005). https://doi.org/10.1038/nn1370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing