Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neural basis of puberty and adolescence

Abstract

The pubertal transition to adulthood involves both gonadal and behavioral maturation. A developmental clock, along with permissive signals that provide information on somatic growth, energy balance and season, time the awakening of gonadotropin releasing hormone (GnRH) neurons at the onset of puberty. High-frequency GnRH release results from disinhibition and activation of GnRH neurons at puberty onset, leading to gametogenesis and an increase in gonadal steroid hormone secretion. Steroid hormones, in turn, both remodel and activate neural circuits during adolescent brain development, leading to the development of sexual salience of sensory stimuli, sexual motivation, and expression of copulatory behaviors in specific social contexts. These influences of hormones on reproductive behavior depend in part on changes in the adolescent brain that occur independently of gonadal maturation. Reproductive maturity is therefore the product of developmentally timed, brain-driven and recurrent interactions between steroid hormones and the adolescent nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GnRH neurons projecting to the median eminence direct pituitary gonadotropin and gonadal steroid hormone secretion.
Figure 2: Adolescent maturation of reproductive behavior requires remodeling and activation of neural circuits involved in salience of sexual stimuli and sensory associations, sexual motivation and sexual performance.

Similar content being viewed by others

References

  1. Silverman, A., Livne, I. & Witkin, J. The gonadotropin-releasing hormone (GnRH) neuronal systems:immunocytochemistry and in situ hybridization. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 1683–1709 (Raven Press, New York, 1994).

    Google Scholar 

  2. Jennes, L.J. & Conn, P.M. Gonadotropin-releasing hormone. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 51–79 (Academic Press, New York, 2002).

    Google Scholar 

  3. Moenter, S.M., Defazio, R.A., Straume, M. & Nunemaker, C.S. Steroid regulation of GnRH neurons. Ann. NY Acad. Sci. 1007, 143–152 (2003).

    CAS  PubMed  Google Scholar 

  4. Han, S.K., Todman, M.G. & Herbison, A.E. Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  5. Abraham, I.M., Han, S.K., Todman, M.G., Korach, K.S. & Herbison, A.E. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J. Neurosci. 23, 5771–5777 (2003).

    CAS  PubMed  Google Scholar 

  6. Kuehl-Kovarik, M.C. et al. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322 (2002).

    CAS  PubMed  Google Scholar 

  7. Kelly, M.J. & Wagner, E.J. GnRH neurons and episodic bursting activity. Trends Endocrinol. Metab. 13, 409–410 (2002).

    CAS  PubMed  Google Scholar 

  8. Kelly, M.J., Qiu, J. & Ronnekleiv, O.K. Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann. NY Acad. Sci. 1007, 6–16 (2003).

    CAS  PubMed  Google Scholar 

  9. Wilson, M. Factors determining the onset of puberty. in Sexual Differentiation (eds. Gerall, A., Moltz, H. & Ward, I.) 275–312 (Plenum Press, New York, 1992).

    Google Scholar 

  10. Ebling, F.J. & Cronin, A.S. The neurobiology of reproductive development. Neuroreport 11, R23–R33 (2000).

    CAS  PubMed  Google Scholar 

  11. Bronson, F.H. & Rissman, E.F. The biology of puberty. Biol. Rev. Camb. Philos. Soc. 61, 157–195 (1986).

    CAS  PubMed  Google Scholar 

  12. Schneider, J.E. & Watts, A.G. Energy balance, ingestive behavior, and reproductive success. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 435–523 (Academic Press, New York, 2002).

    Google Scholar 

  13. Foster, D.L. & Nagatani, S. Physiological perspectives on leptin as a regulator of reproduction: role in timing puberty. Biol. Reprod. 60, 205–215 (1999).

    CAS  PubMed  Google Scholar 

  14. Foster, D.L., Ebling, F.J.P. & Claypool, L.E. Timing of puberty by photoperiod. Reprod. Nutr. Dev. 28, 349–364 (1988).

    CAS  PubMed  Google Scholar 

  15. Mann, D.R. & Plant, T.M. Leptin and pubertal development. Semin. Reprod. Med. 20, 93–102 (2002).

    CAS  PubMed  Google Scholar 

  16. Urbanski, H.F. Leptin and puberty. Trends Endocrinol. Metab. 12, 428–429 (2001).

    CAS  PubMed  Google Scholar 

  17. Cheung, C.C., Thornton, J.E., Nurani, S.D., Clifton, D.K. & Steiner, R.A. A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology 74, 12–21 (2001).

    CAS  PubMed  Google Scholar 

  18. Schneider, J.E. Energy balance and reproduction. Physiol. Behav. 81, 289–317 (2004).

    CAS  PubMed  Google Scholar 

  19. Ebling, F.J. & Foster, D.L. Pineal melatonin rhythms and the timing of puberty in mammals. Experientia 45, 946–954 (1989).

    CAS  PubMed  Google Scholar 

  20. Foster, D.L., Ebling, F.J. & Claypool, L.E. Timing of puberty by photoperiod. Reprod. Nutr. Dev. 28, 349–364 (1988).

    CAS  PubMed  Google Scholar 

  21. Turek, F. & Van Cauter, E. Rhythms in reproduction. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 487–540 (Raven, New York, 1994).

    Google Scholar 

  22. Rissman, E.F. Mating induces puberty in the female musk shrew. Biol. Reprod. 47, 473–477 (1992).

    CAS  PubMed  Google Scholar 

  23. Bronson, F.H. & Maruniak, J.A. Male-induced puberty in female mice: evidence for a synergistic action of social cues. Biol. Reprod. 13, 94–98 (1975).

    CAS  PubMed  Google Scholar 

  24. Wierman, M.E. et al. Repression of gonadotropin-releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6/Tst-1: a regulatory mechanism of phenotype expression? Mol. Cell. Biol. 17, 1652–1665 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, B.J. et al. TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol. Cell. Neurosci. 17, 107–126 (2001).

    CAS  PubMed  Google Scholar 

  26. Ojeda, S.R. et al. The Oct-2 POU domain gene in the neuroendocrine brain: a transcriptional regulator of mammalian puberty. Endocrinology 140, 3774–3789 (1999).

    CAS  PubMed  Google Scholar 

  27. Ojeda, S.R. & Terasawa, E. Neuroendocrine regulation of puberty. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 589–659 (Academic Press, New York, 2002).

    Google Scholar 

  28. Seminara, S.B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    CAS  PubMed  Google Scholar 

  29. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10972–10976 (2003).

    CAS  PubMed  Google Scholar 

  30. Wood, R.I., Robinson, J.E., Forsdike, R.A., Padmanabhan, V. & Foster, D.L. Sexual differentiation of the timing of sexual maturation in sheep. in The Onset of Puberty in Perspective (eds. Bourguignon, J.-P. & Plant, T.M.) 269–287 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  31. Foster, D.L., Padmanabhan, V., Wood, R.I. & Robinson, J.E. Sexual differentiation of the neuroendocrine control of gonadotrophin secretion: concepts derived from sheep models. Reprod. Suppl. 59, 83–99 (2002).

    CAS  PubMed  Google Scholar 

  32. Wood, R.I., Newman, S.W., Lehman, M.N. & Foster, D.L. Sexual differentiaton of the timing of sexual maturation in sheep. GnRH neurons in the fetal lamb hypothalamus are similar in males and females. Neuroendocrinology 55, 427–433 (1992).

    CAS  PubMed  Google Scholar 

  33. Wray, S. & Hoffman, G.E. Postnatal morphological changes in rat LH-RH neurons correlated with sexual maturation. Neuroendocrinology 43, 93–97 (1986).

    CAS  PubMed  Google Scholar 

  34. Goldsmith, P.C. & Song, T. The gonadotropin-releasing hormone containing ventral hypothalamic tract in the fetal rhesus monkey. J. Comp. Neurol. 257, 130–139 (1987).

    CAS  PubMed  Google Scholar 

  35. Kim, S.-J., Foster, D.L. & Wood, R.I. Prenatal testosterone masculinizes synaptic input to GnRH neurons in sheep. Biol. Reprod. 61, 599–605 (1999).

    CAS  PubMed  Google Scholar 

  36. Plant, T. Puberty in primates. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 453–485 (Raven Press, New York, 1994).

    Google Scholar 

  37. Ojeda, S. & Urbanski, H. Puberty in the rat. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 452–485 (Raven Press, New York, 1994).

    Google Scholar 

  38. Terasawa, E. & Fernandez, D.L. Neurobiological mechanisms of the onset of puberty in primates. Endocr. Rev. 22, 111–151 (2001).

    CAS  PubMed  Google Scholar 

  39. Urbanski, H.F. & Ojeda, S.R. Gonadal-independent activation of enhanced afternoon luteinizing hormone release during pubertal development in the female rat. Endocrinology 121, 907–913 (1987).

    CAS  PubMed  Google Scholar 

  40. Winter, J.S.D. & Faiman, C. Serum gonadotropin concentrations in agonadal children and adults. J. Clin. Endocrinol. Metab. 35, 561–564 (1972).

    CAS  PubMed  Google Scholar 

  41. Conte, F.A., Grumbach, M.M. & Kaplan, S.L. A diphasic pattern of gonadotropin secretion in patients with the syndrome of gonadal dysgenesis. J. Clin. Endocrinol. Metab. 40, 670–674 (1975).

    CAS  PubMed  Google Scholar 

  42. Foster, D.L. Comparative development of mammalian females:proposed analogies among patterns of LHsecretion in various species. in Problems in Pediatric Endocrinology (eds. La Cauza, C. & Root, A.W.) 193–210 (Academic Press, New York, 1980).

    Google Scholar 

  43. Ramirez, V.D. & McCann, S.M. Inhibitory effect of testosterone on luteinizing hormone secretion in immature and adult rats. Endocrinology 76, 412–417 (1965).

    CAS  PubMed  Google Scholar 

  44. Foster, D. Puberty in the sheep. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 411–451 (Raven Press, New York, 1994).

    Google Scholar 

  45. Sisk, C.L. & Turek, F.W. Developmental time course of pubertal and photoperiodic changes in testosterone negative feedback on gonadotropin secretion in the golden hamster. Endocrinology 112, 1208–1216 (1983).

    CAS  PubMed  Google Scholar 

  46. Sisk, C. Evidence that a decrease in testosterone negative feedback mediates the pubertal increase in luteinizing hormone pulse frequency in male ferrets. Biol. Reprod. 37, 73–81 (1987).

    CAS  PubMed  Google Scholar 

  47. Rapisarda, J., Bergman, K., Steiner, R. & Foster, D. Response to estradiol inhibition of tonic luteinizing hormone secretion decreased during the final stage of puberty in the rhesus monkey. Endocrinology 112, 1172–1179 (1983).

    CAS  PubMed  Google Scholar 

  48. Plant, T.M. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Front. Neuroendocrinol. 22, 107–139 (2001).

    CAS  PubMed  Google Scholar 

  49. Brann, D. & Mahesh, V. Excitatory amino acids: Evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr. Rev. 18, 678–700 (1997).

    CAS  PubMed  Google Scholar 

  50. Ojeda, S.R. et al. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann. Med. 35, 244–255 (2003).

    PubMed  Google Scholar 

  51. Petersen, S., McCrone, S., Coy, D., Adelman, J. & Mahan, L. GABAa receptor subunit mRNA in cells of the preoptic area: colocalization with LHRH mRNA using dual-label in situ hybridization histochemistry. Endocr. J. 1, 29–34 (1993).

    Google Scholar 

  52. Gore, A., Wu, T., Rosenberg, J. & Roberts, J. Gonadotropin-releasing hormone and NMDA receptor gene expression and colocalization change during puberty in female rats. J. Neurosci. 16, 5281–5289 (1996).

    CAS  PubMed  Google Scholar 

  53. Eyigor, O. & Jennes, L. Expression of glutamate receptor subunit mRNAs in gonadotropin-releasing hormone neurons during the sexual maturation of the female rat. Neuroendocrinology 66, 122–129 (1997).

    CAS  PubMed  Google Scholar 

  54. Witkin, J., O'Sullivan, H. & Ferin, M. Glial ensheathment of GnRH neurons in pubertal female rhesus macaques. J. Neuroendocrinol. 7, 665–671 (1995).

    CAS  PubMed  Google Scholar 

  55. Witkin, J. & Romero, M. Comparison of ultrastructural characteristics of gonadotropin-releasing hormone neurons in prepubertal and adult male rats. Neuroscience 64, 1145–1151 (1995).

    CAS  PubMed  Google Scholar 

  56. Han, S.K., Abraham, I.M. & Herbison, A.E. Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology 143, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  57. Baum, M.J. Precocious mating in male rats following treatment with androgen or estrogen. J. Comp. Physiol. Psychol. 78, 356–367 (1972).

    CAS  PubMed  Google Scholar 

  58. Sodersten, P., Damassa, D.A. & Smith, E.R. Sexual behavior in developing male rats. Horm. Behav. 8, 320–341 (1977).

    CAS  PubMed  Google Scholar 

  59. Sisk, C.L., Berglund, L.A., Tang, Y.P. & Venier, J.E. Photoperiod modulates pubertal shifts in behavioral responsiveness to testosterone. J. Biol. Rhythms 7, 329–339 (1992).

    CAS  PubMed  Google Scholar 

  60. Meek, L., Romeo, R., Novak, C. & Sisk, C. Actions of testosterone in prepubertal and postpubertal male hamsters: dissociation of effects on reproductive behavior and brain androgen receptor immunoreactivity. Horm. Behav. 31, 75–88 (1997).

    CAS  PubMed  Google Scholar 

  61. Romeo, R.D., Richardson, H.N. & Sisk, C.L. Puberty and the maturation of the male brain and sexual behavior: recasting a behavioral potential. Neurosci. Biobehav. Rev. 26, 381–391 (2002).

    PubMed  Google Scholar 

  62. Olster, D.H. & Blaustein, J.D. Development of progesterone-facilitated lordosis in female guinea pigs: relationship to neural estrogen and progestin receptors. Brain Res. 484, 168–176 (1989).

    CAS  PubMed  Google Scholar 

  63. Meisel, R. & Sachs, B. The physiology of male sexual behavior. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 3–105 (Raven Press, New York, 1994).

    Google Scholar 

  64. Hull, E.M., Meisel, R.L. & Sachs, B.D. Male sexual behavior. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 3–137 (Academic Press, New York, 2002).

    Google Scholar 

  65. Pfaff, D.W., Schwartz-Giblin, S., McCarthy, M.M. & Kow, L.-M. Cellular and molecular mechanisms of female reproductive behaviors. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J. D.) 107–220 (Raven Press, New York, 1994).

    Google Scholar 

  66. Blaustein, J.D. & Erskine, M.S. Feminine sexual behavior: cellular integration of hormonal and afferent information in the rodent forebrain. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 139–214 (Academic Press, New York, 2002).

    Google Scholar 

  67. Morris, J.A., Jordan, C.L. & Breedlove, S.M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).

    CAS  PubMed  Google Scholar 

  68. Sisk, C.L., Schulz, K.M. & Zehr, J.L. Puberty: A finishing school for male social behavior. Ann. NY Acad. Sci. 1007, 189–198 (2003).

    PubMed  Google Scholar 

  69. Schulz, K.M. et al. Gonadal hormones masculinize and defeminize reproductive behaviors during puberty in the male Syrian hamster. Horm. Behav. 45, 242–249 (2004).

    CAS  PubMed  Google Scholar 

  70. Eichmann, F. & Holst, D.V. Organization of territorial marking behavior by testosterone during puberty in male tree shrews. Physiol. Behav. 65, 785–791 (1999).

    CAS  PubMed  Google Scholar 

  71. Primus, R. & Kellogg, C. Gonadal hormones during puberty organize environment-related social interaction in the male rat. Horm. Behav. 24, 311–323 (1990).

    CAS  PubMed  Google Scholar 

  72. Primus, R.J. & Kellogg, C.K. Pubertal-related changes influence the development of environment-related social interaction in the male rat. Dev. Psychobiol. 22, 633–643 (1989).

    CAS  PubMed  Google Scholar 

  73. Hull, E.M. et al. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain Res. 105, 105–116 (1999).

    CAS  PubMed  Google Scholar 

  74. Everitt, B. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).

    CAS  PubMed  Google Scholar 

  75. Wood, R. & Newman, S. Hormonal influence on neurons of the mating behavior pathway in male hamsters. in Neurobiological Effects of Sex Steroid Hormones (eds. Micevych, P. & Hammer, R.) 3–39 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  76. Pfaus, J.G. Neurobiology of sexual behavior. Curr. Opin. Neurobiol. 9, 751–758 (1999).

    CAS  PubMed  Google Scholar 

  77. Davis, E.C., Shryne, J.E. & Gorski, R.A. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63, 142–148 (1996).

    CAS  PubMed  Google Scholar 

  78. Nunez, J.L., Sodhi, J. & Juraska, J.M. Ovarian hormones after postnatal day 20 reduce neuron number in the rat primary visual cortex. J. Neurobiol. 52, 312–321 (2002).

    CAS  PubMed  Google Scholar 

  79. Pinos, H. et al. The development of sex differences in the locus coeruleus of the rat. Brain Res. Bull. 56, 73–78 (2001).

    CAS  PubMed  Google Scholar 

  80. Goldstein, L.A., Kurz, E.M. & Sengelaub, D.R. Androgen regulation of dendritic growth and retraction in the development of a sexually dimorphic spinal nucleus. J. Neurosci. 10, 935–946 (1990).

    CAS  PubMed  Google Scholar 

  81. Chung, W.C., De Vries, G.J. & Swaab, D.F. Sexual differentiation of the bed nucleus of the stria terminalis in humans may extend into adulthood. J. Neurosci. 22, 1027–1033 (2002).

    CAS  PubMed  Google Scholar 

  82. Andersen, S.L., Rutstein, M., Benzo, J.M., Hostetter, J.C. & Teicher, M.H. Sex differences in dopamine receptor overproduction and elimination. Neuroreport 8, 1495–1498 (1997).

    CAS  PubMed  Google Scholar 

  83. Andersen, S.L., Thompson, A.P., Krenzel, E. & Teicher, M.H. Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology 27, 683–691 (2002).

    CAS  PubMed  Google Scholar 

  84. Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319–334 (1982).

    PubMed  Google Scholar 

  85. Andersen, S.L. & Teicher, M.H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).

    CAS  PubMed  Google Scholar 

  86. Johnston, R.E. & Coplin, B. Development of responses to vaginal secretion and other substances in golden hamsters. Behav. Neural Biol. 25, 473–489 (1979).

    CAS  PubMed  Google Scholar 

  87. Romeo, R., Parfitt, D., Richardson, H. & Sisk, C. Pheromones elicit equivalent levels of fos-immunoreactivity in prepubertal and adult male Syrian hamsters. Horm. Behav. 34, 48–55 (1998).

    CAS  PubMed  Google Scholar 

  88. Schulz, K.M. et al. Medial preoptic area dopaminergic responses to female pheromones develop during puberty in the male Syrian hamster. Brain Res. 988, 139–145 (2003).

    CAS  PubMed  Google Scholar 

  89. Wallen, K. Sex and context: hormones and primate sexual motivation. Horm. Behav. 40, 339–357 (2001).

    CAS  PubMed  Google Scholar 

  90. Floody, O., Comerci, J. & Lisk, R. Hormonal control of sex differences in ultrasound production by hamsters. Horm. Behav. 21, 17–35 (1987).

    CAS  PubMed  Google Scholar 

  91. Paredes, R., Lopez, M. & Baum, M. Testosterone augments neuronal Fos responses to estrous odors throughout the vomeronasal projection pathway of gonadectomized male and female rats. Horm. Behav. 33, 48–57 (1998).

    CAS  PubMed  Google Scholar 

  92. Woodley, S.K. & Baum, M.J. Effects of sex hormones and gender on attraction thresholds for volatile anal scent gland odors in ferrets. Horm. Behav. 44, 110–118 (2003).

    CAS  PubMed  Google Scholar 

  93. Romeo, R.D. & Sisk, C.L. Pubertal and seasonal plasticity in the amygdala. Brain Res. 889, 71–77 (2001).

    CAS  PubMed  Google Scholar 

  94. Hebbard, P.C., King, R.R., Malsbury, C.W. & Harley, C.W. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1. Exp. Neurol. 182, 470–475 (2003).

    CAS  PubMed  Google Scholar 

  95. Wallen, K. & Zehr, J.L. Hormones and history: the evolution and development of primate female sexuality. J. Sex Res. 41, 101–112 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. Herdt, G. & McClintock, M. The magical age of 10. Arch. Sex. Behav. 29, 587–606 (2000).

    CAS  PubMed  Google Scholar 

  97. Benes, F.M., Turtle, M., Khan, Y. & Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry 51, 477–484 (1994).

    CAS  PubMed  Google Scholar 

  98. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 101, 8174–8179 (2004).

    CAS  PubMed  Google Scholar 

  99. Paus, T. et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54, 255–266 (2001).

    CAS  PubMed  Google Scholar 

  100. Sowell, E.R., Trauner, D.A., Gamst, A. & Jernigan, T.L. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev. Med. Child Neurol. 44, 4–16 (2002).

    PubMed  Google Scholar 

  101. Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L. & Toga, A.W. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 2, 859–861 (1999).

    CAS  PubMed  Google Scholar 

  102. Giedd, J.N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    CAS  PubMed  Google Scholar 

  103. De Bellis, M.D. et al. Sex differences in brain maturation during childhood and adolescence. Cereb. Cortex 11, 552–557 (2001).

    CAS  PubMed  Google Scholar 

  104. Huttenlocher, P.R. & Dabholkar, A.S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  105. Bourgeois, J.P. & Rakic, P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13, 2801–2820 (1993).

    CAS  PubMed  Google Scholar 

  106. Andersen, S.L., Thompson, A.T., Rutstein, M., Hostetter, J.C. & Teicher, M.H. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37, 167–169 (2000).

    CAS  PubMed  Google Scholar 

  107. Nunez, J.L., Lauschke, D.M. & Juraska, J.M. Cell death in the development of the posterior cortex in male and female rats. J. Comp. Neurol. 436, 32–41 (2001).

    CAS  PubMed  Google Scholar 

  108. Nunez, J.L., Jurgens, H.A. & Juraska, J.M. Androgens reduce cell death in the developing rat visual cortex. Brain Res. Dev. Brain Res. 125, 83–88 (2000).

    CAS  PubMed  Google Scholar 

  109. Cunningham, M.G., Bhattacharyya, S. & Benes, F.M. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J. Comp. Neurol. 453, 116–130 (2002).

    Google Scholar 

  110. Woo, T.U., Pucak, M.L., Kye, C.H., Matus, C.V. & Lewis, D.A. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience 80, 1149–1158 (1997).

    CAS  PubMed  Google Scholar 

  111. Andersen, S.L. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 27, 3–18 (2003).

    PubMed  Google Scholar 

  112. Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 24, 417–463 (2000).

    CAS  PubMed  Google Scholar 

  113. Kelley, A.E., Schochet, T. & Landry, C.F. Risk taking and novelty seeking in adolescence: introduction to part I. Ann. NY Acad. Sci. 1021, 27–32 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Salas-Ramirez, K. Schulz and J. Zehr for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L Sisk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisk, C., Foster, D. The neural basis of puberty and adolescence. Nat Neurosci 7, 1040–1047 (2004). https://doi.org/10.1038/nn1326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing