Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recalibration of audiovisual simultaneity

Abstract

To perceive the auditory and visual aspects of a physical event as occurring simultaneously, the brain must adjust for differences between the two modalities in both physical transmission time and sensory processing time. One possible strategy to overcome this difficulty is to adaptively recalibrate the simultaneity point from daily experience of audiovisual events. Here we report that after exposure to a fixed audiovisual time lag for several minutes, human participants showed shifts in their subjective simultaneity responses toward that particular lag. This 'lag adaptation' also altered the temporal tuning of an auditory-induced visual illusion, suggesting that adaptation occurred via changes in sensory processing, rather than as a result of a cognitive shift while making task responses. Our findings suggest that the brain attempts to adjust subjective simultaneity across different modalities by detecting and reducing time lags between inputs that likely arise from the same physical events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The time course of the stimulus sequence used to test the effects of audiovisual lag adaptation on simultaneity judgments.
Figure 2: The effects of audiovisual (AV) lag adaptation on simultaneity judgments.
Figure 3: Effects of audiovisual (AV) lag adaptation on the stream/bounce illusion.
Figure 4: The lag aftereffect for various combinations of adaptation and test stimuli.

Similar content being viewed by others

References

  1. Pöppel, E. Grenzen des Bewuβtseins: Über Wirklichkeit und Welterfahrung (Deutsche Verlags-Anstalt GmbH, Stuttgart, 1985).

    Google Scholar 

  2. Spence, C. & Squire, S. Multisensory integration: maintaining the perception of synchrony. Curr. Biol. 13, R519–R521 (2003).

    Article  CAS  Google Scholar 

  3. King, A.J. & Palmer, A.R. Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp. Brain. Res. 60, 492–500 (1985).

    Article  CAS  Google Scholar 

  4. Regan, D. Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine (Elsevier, New York, 1989).

    Google Scholar 

  5. Tappe, T., Niepel, M. & Neumann, O. A dissociation between reaction time to sinusoidal gratings and temporal-order judgment. Perception 23, 335–347 (1994).

    Article  CAS  Google Scholar 

  6. Stone, J.V. et al. When is now? Perception of simultaneity. Proc. R. Soc. Lond. B Biol. Sci. 268, 31–38 (2001).

    Article  CAS  Google Scholar 

  7. Sugita, Y. & Suzuki, Y. Audiovisual perception: implicit estimation of sound-arrival time. Nature 421, 911 (2003).

    Article  CAS  Google Scholar 

  8. James, W. Principles of Psychology (Holt, New York, 1890).

    Google Scholar 

  9. Spence, C., Shore, D.I. & Klein, R.M. Multisensory prior entry. J. Exp. Psychol. Gen. 130, 799–832 (2001).

    Article  CAS  Google Scholar 

  10. Sekuler, R., Sekuler, A.B. & Lau, R. Sound alters visual motion perception. Nature 385, 308 (1997).

    Article  CAS  Google Scholar 

  11. Watanabe, K. & Shimojo, S. When sound affects vision: effects of auditory grouping on visual motion perception. Psychol. Sci. 12, 109–116 (2001).

    Article  CAS  Google Scholar 

  12. Shimojo, S. & Shams, L. Sensory modalities are not separate modalities: plasticity and interactions. Curr. Opin. Neurobiol. 11, 505–509 (2001).

    Article  CAS  Google Scholar 

  13. Dragoi, V., Rivadulla, C. & Sur, M. Foci of orientation plasticity in visual cortex. Nature 411, 80–86 (2001).

    Article  CAS  Google Scholar 

  14. Mather, G., Verstraten, F.A.J. & Anstis, S.M. The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  15. Kashino, M. & Nishida, S. Adaptation in the processing of interaural time differences revealed by the auditory localization aftereffect. J. Acoust. Soc. Am. 103, 3597–3604 (1998).

    Article  CAS  Google Scholar 

  16. Dolezal, H. Living in a World Transformed: Perceptual and Performatory Adaptation to Visual Distortion (Academic, New York, 1982).

    Google Scholar 

  17. Barlow, H.B. & Földiák, P. Adaptation and decorrelation in the cortex. in The Computing Neuron (eds. Durbin, R., Miall, C. & Mitchison, G.) 54–72 (Addison-Wesley, Boston, 1989).

    Google Scholar 

  18. Lewald, J. & Guski, R. Auditory-visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception. Neurosci. Lett. 357, 119–122 (2004).

    Article  CAS  Google Scholar 

  19. Recanzone, G.H. Auditory influences on visual temporal rate perception. J. Neurophysiol. 89, 1078–1093 (2003).

    Article  Google Scholar 

  20. Bennett, R.G. & Westheimer, G. A shift in the perceived simultaneity of adjacent visual stimuli following adaptation to stroboscopic motion along the same axis. Vision Res. 25, 565–569 (1985).

    Article  CAS  Google Scholar 

  21. Okada, M. & Kashino, M. The role of spectral change detectors in temporal order judgment of tones. Neuroreport 14, 261–264 (2003).

    Article  Google Scholar 

  22. Cunningham, D.W., Billock, V.A. & Tsou, B.H. Sensorimotor adaptation to violations of temporal contiguity. Psychol. Sci. 12, 532–535 (2001).

    Article  CAS  Google Scholar 

  23. Cunningham, D.W., Chatziastros, A., von der Heyde, M. & Bulthoff, H.H. Driving in the future: temporal visuomotor adaptation and generalization. J. Vis. 1, 88–98 (2001).

    Article  CAS  Google Scholar 

  24. Canon, L.K. Intermodality inconsistency of input and directed attention as determinants of the nature of adaptation. J. Exp. Psychol. 84, 141–147 (1970).

    Article  CAS  Google Scholar 

  25. Recanzone, G.H. Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc. Natl. Acad. Sci. USA 95, 869–875 (1998).

    Article  CAS  Google Scholar 

  26. Knudsen, E.I. & Knudsen, P.F. Vision guides the adjustment of auditory localization in young barn owls. Science 230, 545–548 (1985).

    Article  CAS  Google Scholar 

  27. Zwiers, M.P., Van Opstal, A.J. & Paige, G.D. Plasticity in human sound localization induced by compressed spatial vision. Nat. Neurosci. 6, 175–181 (2003).

    Article  CAS  Google Scholar 

  28. Shams, L., Kamitani, Y. & Shimojo, S. Illusions. What you see is what you hear. Nature 408, 788 (2000).

    Article  CAS  Google Scholar 

  29. Kitagawa, N. & Ichihara, S. Hearing visual motion in depth. Nature 416, 172–174 (2002).

    Article  CAS  Google Scholar 

  30. Foder, J.A. The Modularity of Mind (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  31. Dennett, D.C. & Kinsbourne, M. Time and the observer: the where and when of consciousness in the brain. Behav. Brain Sci. 15, 183–247 (1992).

    Article  Google Scholar 

  32. Nishida, S. & Johnston, A. Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr. Biol. 12, 359–368 (2002).

    Article  CAS  Google Scholar 

  33. Jeffress, L.A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  34. McAlpine, D. & Grothe, B. Sound localization and delay lines – do mammals fit the model? Trends Neurosci. 26, 347–350 (2003).

    Article  CAS  Google Scholar 

  35. Reichardt, W. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. in Sensory Communication (ed. Rosenblith, W.A.) 303–317 (MIT Press, Cambridge, Massachusetts, 1961).

    Google Scholar 

  36. Lu, Z.L. & Sperling, G. Three-systems theory of human visual motion perception: review and update. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2331–2370 (2001).

    Article  CAS  Google Scholar 

  37. Barlow, H.B. & Hill, R.M. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature 200, 1345–1347 (1963).

    Article  CAS  Google Scholar 

  38. Bushara, K.O., Grafman, J. & Hallett, M. Neural correlates of auditory-visual stimulus onset asynchrony detection. J. Neurosci. 21, 300–304 (2001).

    Article  CAS  Google Scholar 

  39. Bushara, K.O. et al. Neural correlates of cross-modal binding. Nat. Neurosci. 6, 190–195 (2003).

    Article  CAS  Google Scholar 

  40. Meredith, M.A., Nemitz, J.W. & Stein, B.E. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J. Neurosci. 7, 3215–3229 (1987).

    Article  CAS  Google Scholar 

  41. Corneil, B.D., Van Wanrooij, M., Munoz, D.P. & Van Opstal, A.J. Auditory-visual interactions subserving goal-directed saccades in a complex scene. J. Neurophysiol. 88, 438–454 (2002).

    Article  CAS  Google Scholar 

  42. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  43. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  44. Watson, A.B. Probability summation over time. Vision Res. 19, 515–522 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Arnold, M. Changizi, T. Hirahara, A. Johnston and D. Wu. This work was partially supported by the Human Frontier Science Program (RGP0070/2003-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin'ya Nishida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisaki, W., Shimojo, S., Kashino, M. et al. Recalibration of audiovisual simultaneity. Nat Neurosci 7, 773–778 (2004). https://doi.org/10.1038/nn1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing