Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The fusiform face area subserves face perception, not generic within-category identification

Abstract

The function of the fusiform face area (FFA), a face-selective region in human extrastriate cortex, is a matter of active debate. Here we measured the correlation between FFA activity measured by functional magnetic resonance imaging (fMRI) and behavioral outcomes in perceptual tasks to determine the role of the FFA in the detection and within-category identification of faces and objects. Our data show that FFA activation is correlated on a trial-by-trial basis with both detecting the presence of faces and identifying specific faces. However, for most non-face objects (including cars seen by car experts), within-category identification performance was correlated with activation in other regions of the ventral occipitotemporal cortex, not the FFA. These results indicate that the FFA is involved in both detection and identification of faces, but that it has little involvement in within-category identification of non-face objects (including objects of expertise).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Right FFA hemodynamic response in face experiments.
Figure 3: Involvement of face-selective regions of interest in face detection and face identification.
Figure 4: Hemodynamic response from the FFA for six categories as a function of detection and identification performance.
Figure 5: Car experts' data from the rFFA as a function of face and car detection and identification performance.
Figure 6: Location of cortical regions that were correlated with object identification and their relation to the FFA.
Figure 7: Deconvolved hemodynamic responses from ventral occipital cortex as a function of detection and identification performance.

Similar content being viewed by others

References

  1. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  2. McCarthy, G., Puce, A., Gore, J.C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  3. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  4. Hasson, U., Hendler, T., Ben Bashat, D. & Malach, R. Vase or face? A neural correlate of shape-selective grouping processes in the human brain. J. Cogn. Neurosci. 13, 744–753 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  5. Andrews, T.J., Schluppeck, D., Homfray, D., Matthews, P. & Blakemore, C. Activity in the fusiform gyrus predicts conscious perception of Rubin's vase-face illusion. Neuroimage 17, 890–901 (2002).

    Article  PubMed Central  Google Scholar 

  6. George, N. et al. Contrast polarity and face recognition in the human fusiform gyrus. Nat. Neurosci. 2, 574–580 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  7. Moutoussis, K. & Zeki, S. The relationship between cortical activation and perception investigated with invisible stimuli. Proc. Natl. Acad. Sci. USA 99, 9527–9532 (2002).

    Article  CAS  Google Scholar 

  8. O'Craven, K.M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stiimulus- specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Article  CAS  Google Scholar 

  9. Ishai, A., Ungerleider, L.G. & Haxby, J.V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  10. Gauthier, I., Anderson, A.W., Tarr, M.J., Skudlarski, P. & Gore, J.C. Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Curr. Biol. 7, 645–651 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  11. Tarr, M.J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3, 764–769 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  12. Gauthier, I., Skudlarski, P., Gore, J.C. & Anderson, A.W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  13. Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  14. Allison, T., McCarthy, G., Nobre, A., Puce, A. & Belger, A. Human extrastriate visual cortex and the perception of faces, words, numbers and colors. Cereb. Cortex 4, 544–554 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  15. Puce, A., Allison, T., Gore, J.C. & McCarthy, G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  16. Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L. & Haxby, J.V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  17. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  18. Vuilleumier, P., Armony, J.L., Driver, J. & Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  19. Kanwisher, N., Tong, F. & Nakayama, K. The effect of face inversion on the human fusiform face area. Cognition 68, B1–11 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  20. Gauthier, I. et al. The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  21. Rossion, B., Schiltz, C. & Crommelinck, M. The functionally defined right occipital and fusiform “face areas” discriminate novel from visually familiar faces. Neuroimage 19, 877–883 (2003).

    Article  PubMed Central  Google Scholar 

  22. Kanwisher, N. in The Visual Neurosciences (eds. Chalupa, L.M & Werner, J.S.) 1179–1189 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  23. Gauthier, I., Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    Article  CAS  Google Scholar 

  24. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  25. Bar, M. et al. Cortical mechanisms specific to explicit visual object recognition. Neuron 29, 529–535 (2001).

    Article  CAS  Google Scholar 

  26. Dale, A.M. & Buckner, R.L. Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp. 5, 329–340 (1997).

    Article  CAS  Google Scholar 

  27. Grill-Spector, K. in Attention and Performance XX. Functional Brain Imaging of Visual Cognition (eds. Kanwisher, N. & Duncan, J.) 169–193 (Oxford Univ. Press, London, 2003).

    Google Scholar 

  28. Grill-Spector, K. & Kanwisher, N. Visual recognition: as soon as you see it you know what it is. Psychol. Sci. (in press).

  29. Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R. & Dale, A.M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9, 3735–3739 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  30. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  31. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  32. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  33. McKone, E. & Kanwisher, N. in From Monkey Brain to Human Brain (eds. Dehaene, S., Duhamel, J.R., Hauser, M. & Rizzolatti, G.) (MIT Press, Cambridge, Massachusetts, in press).

  34. Avidan, G., Hasson, U., Hendler, T., Zohary, E. & Malach, R. Analysis of the neuronal selectivity underlying low fMRI signals. Curr. Biol. 12, 964–972 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  35. Spiridon, M. & Kanwisher, N. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35, 1157–1165 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  36. Tsao, D.Y., Freiwald, W.A., Knutsen, T.A., Mandeville, J.B. & Tootell, R.B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  37. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    Article  CAS  Google Scholar 

  38. Liu, J., Harris, A. & Kanwisher, N. Stages of processing in face perception: an MEG study. Nat. Neurosci. 5, 910–916 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  39. Hasson, U., Avidan, G., Deouell, L.Y., Bentin, S. & Malach, R. Face-selective activation in a congenital prosopagnosic subject. J. Cogn. Neurosci. 15, 419–431 (2003).

    Article  PubMed Central  Google Scholar 

  40. Farah, M.J. Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision (MIT Press, Bradford Books, Cambridge, Massachusetts, 1990).

  41. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  42. Salzman, C.D., Britten, K.H. & Newsome, W.T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  43. Thompson, K.G. & Schall, J.D. The detection of visual signals by macaque frontal eye field during masking. Nat. Neurosci. 2, 283–288 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  44. Thompson, K.G. & Schall, J.D. Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vision Res. 40, 1523–1538 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  45. Ress, D. & Heeger, D.J. Neuronal correlates of perception in early visual cortex. Nat. Neurosci. 6, 414–420 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  46. Puce, A., Allison, T., Bentin, S., Gore, J.C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  47. Hoffman, E.A. & Haxby, J.V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3, 80–84 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  48. Haxby, J.V., Hoffman, E.A. & Gobbini, M.I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  49. George, N., Driver, J. & Dolan, R.J. Seen gaze-direction modulates fusiform activity and its coupling with other brain areas during face processing. Neuroimage 13, 1102–1112 (2001).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Xu for help conducting the expertise assessment of some subjects, and C. Baker, G. Golarai, Y. Jiang, J. Weaver and G. Yovel for comments on the manuscript. We thank I. Gauthier for permission to use her behavioral expertise test. This research was supported by National Eye Institute grant EY13455 to N.K., and by the National Center for Research Resources (P41RR14075) and the Mental Illness and Neuroscience Discovery (MIND) Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalanit Grill-Spector.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

V1 and FFA activation as a function of detection and identification performance. Group data: deconvolved hemodynamic signal in V1/V2 and FFA relative to a blank fixation baseline averaged across 5 subjects. Error bars indicate SEM across 5 subjects. (GIF 10 kb)

Supplementary Table 1 (PDF 18 kb)

Supplementary Note (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 7, 555–562 (2004). https://doi.org/10.1038/nn1224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing