Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A proportional but slower NMDA potentiation follows AMPA potentiation in LTP

Abstract

Most excitatory glutamatergic synapses contain both AMPA and NMDA receptors, but whether these receptors are regulated together or independently during synaptic plasticity has been controversial. Although long-term potentiation (LTP) is thought to selectively enhance AMPA currents and alter the NMDA-to-AMPA ratio, this ratio is well conserved across synapses onto the same neuron. This suggests that the NMDA-to-AMPA ratio is only transiently perturbed by LTP. To test this, we induced LTP at rat neocortical synapses and recorded mixed AMPA-NMDA currents. We observed rapid LTP of AMPA currents, as well as delayed potentiation of NMDA currents that required previous AMPA potentiation. The delayed potentiation of NMDA currents restored the original NMDA-to-AMPA ratio within 2 h of LTP induction. These data suggest that recruitment of AMPA receptors to synapses eventually induces a proportional increase in NMDA current. This may ensure that LTP does not alter the relative contributions of these two receptors to synaptic transmission and information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term potentiation of mEPSCs.
Figure 2: Delayed NMDA-LTP restores the NMDA-to-AMPA ratio.
Figure 3: Correlation between the AMPA and NMDA amplitudes of individual mEPSCs.
Figure 4: Delayed NMDA-LTP does not require post-induction activity or glutamate receptor activation, but requires AMPA-LTP.
Figure 5: Delayed and proportional NMDA-LTP at a unitary connection between layer 5 pyramidal neurons.
Figure 6: Summary data from layer-5 unitary synapses.

Similar content being viewed by others

References

  1. Rivadulla, C., Sharma, J. & Sur, M. Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J. Neurosci. 21, 1710–1719 (2001).

    Article  CAS  Google Scholar 

  2. Daw, N.W., Stein, P.S. & Fox, K. The role of NMDA receptors in information processing. Annu. Rev. Neurosci. 16, 207–222 (1993).

    Article  CAS  Google Scholar 

  3. Myme, C.I., Sugino, K., Turrigiano, G.G. & Nelson, S.B. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol. 90, 771–779 (2003).

    Article  CAS  Google Scholar 

  4. Watt, A.J., van Rossum, M.C., MacLeod, K.M., Nelson, S.B. & Turrigiano, G.G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  Google Scholar 

  5. Umemiya, M., Senda, M. & Murphy, T.H. Behaviour of NMDA and AMPA receptor-mediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging. J. Physiol. 521, 113–122 (1999).

    Article  CAS  Google Scholar 

  6. McAllister, A.K. & Stevens, C.F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl. Acad. Sci. USA 97, 6173–6178 (2000).

    Article  CAS  Google Scholar 

  7. Groc, L., Gustafsson, B. & Hanse, E. Spontaneous unitary synaptic activity in CA1 pyramidal neurons during early postnatal development: constant contribution of AMPA and NMDA receptors. J. Neurosci. 22, 5552–5562 (2002).

    Article  CAS  Google Scholar 

  8. Muller, D., Joly, M. & Lynch, G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697 (1988).

    Article  CAS  Google Scholar 

  9. Kauer, J.A., Malenka, R.C. & Nicoll, R.A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  10. Perkel, D.J. & Nicoll, R.A. Evidence for all-or-none regulation of neurotransmitter release: implications for long-term potentiation. J. Physiol. 471, 481–500 (1993).

    Article  CAS  Google Scholar 

  11. Liao, D., Hessler, N.A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  Google Scholar 

  12. Heynen, A.J., Quinlan, E.M., Bae, D.C. & Bear, M.F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).

    Article  CAS  Google Scholar 

  13. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  Google Scholar 

  14. Clark, K.A. & Collingridge, G.L. Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J. Physiol. 482, 39–52 (1995).

    Article  CAS  Google Scholar 

  15. Bashir, Z.I., Alford, S., Davies, S.N., Randall, A.D. & Collingridge, G.L. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349, 156–158 (1991).

    Article  CAS  Google Scholar 

  16. Aniksztejn, L. & Ben-Ari, Y. Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. J. Neurophysiol. 74, 2349–2357 (1995).

    Article  CAS  Google Scholar 

  17. Grosshans, D.R., Clayton, D.A., Coultrap, S.J. & Browning, M.D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci. 5, 27–33 (2002).

    Article  CAS  Google Scholar 

  18. Berretta, N. et al. Long-term potentiation of NMDA receptor–mediated EPSP in guinea-pig hippocampal slices. Eur. J. Neurosci. 3, 850–854 (1991).

    Article  Google Scholar 

  19. Xiao, M.Y., Karpefors, M., Niu, Y.P. & Wigstrom, H. The complementary nature of long-term depression and potentiation revealed by dual component excitatory postsynaptic potentials in hippocampal slices from young rats. Neuroscience 68, 625–635 (1995).

    Article  CAS  Google Scholar 

  20. Malinow, R., Mainen, Z.F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    Article  CAS  Google Scholar 

  21. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  22. Pratt, K.G., Watt, A.J., Griffith, L.C., Nelson, S.B. & Turrigiano, G.G. Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII. Neuron 39, 269–281 (2003).

    Article  CAS  Google Scholar 

  23. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  Google Scholar 

  24. Liao, D., Scannevin, R.H. & Huganir, R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J. Neurosci. 21, 6008–6017 (2001).

    Article  CAS  Google Scholar 

  25. Oliet, S.H., Malenka, R.C. & Nicoll, R.A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271, 1294–1297 (1996).

    Article  CAS  Google Scholar 

  26. Bekkers, J.M. & Stevens, C.F. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729 (1990).

    Article  CAS  Google Scholar 

  27. Fitzjohn, S.M. et al. An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology 41, 693–699 (2001).

    Article  CAS  Google Scholar 

  28. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  29. Lambolez, B., Ropert, N., Perrais, D., Rossier, J. & Hestrin, S. Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc. Natl. Acad. Sci. USA 93, 1797–1802 (1996).

    Article  CAS  Google Scholar 

  30. Choi, S., Klingauf, J. & Tsien, R.W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat. Neurosci. 3, 330–336 (2000).

    Article  CAS  Google Scholar 

  31. Renger, J.J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    Article  CAS  Google Scholar 

  32. Alagarsamy, S., Sorensen, S.D. & Conn, P.J. Coordinate regulation of metabotropic glutamate receptors. Curr. Opin. Neurobiol. 11, 357–362 (2001).

    Article  CAS  Google Scholar 

  33. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  34. Rao, A. & Craig, A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  35. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  Google Scholar 

  36. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  37. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  38. Lissin, D.V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  Google Scholar 

  39. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  Google Scholar 

  40. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  41. Selig, D.K., Hjelmstad, G.O., Herron, C., Nicoll, R.A. & Malenka, R.C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    Article  CAS  Google Scholar 

  42. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  43. Mu, Y., Ostuka, T., Horton, A.C., Scott, D.B. & Ehlers, M.D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40, 581–594 (2003).

    Article  CAS  Google Scholar 

  44. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  Google Scholar 

  45. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  Google Scholar 

  46. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  47. Turrigiano, G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  Google Scholar 

  48. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  49. Kilman, V., van Rossum, M.C. & Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J. Neurosci. 22, 1328–1337 (2002).

    Article  CAS  Google Scholar 

  50. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Hermann for the preparation of cultures. The GFP-GluR1 carboxy tail construct was a gift from R. Malinow. This work was supported by the National Institute of Neurological Diseases and Stroke (36853), the Eye Institute (11116) and a Wellcome Trust Senior Fellowship to M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina G Turrigiano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, A., Sjöström, P., Häusser, M. et al. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci 7, 518–524 (2004). https://doi.org/10.1038/nn1220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing