Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emx2 patterns the neocortex by regulating FGF positional signaling

Abstract

Molecular genetic studies implicate fibroblast growth factor 8 (FGF8), and the transcription factor Emx2, in development of the neocortical area map. Both are proposed to specify area position along the anterior-to-posterior axis of the cortical primordium. Whether FGF8 and Emx2 act independently or coordinately, or whether one controls the other, has not been determined. Here we report that Emx2, by regulating FGF8, has an indirect but vital role in area-map development. Using electroporation-mediated gene transfer in living mouse embryos, we found that overexpressing Emx2 altered the area map, but only when ectopic Emx2 overlapped the FGF8 source. Furthermore, we found that FGF8 levels were decreased by excess Emx2, and increased in mice lacking Emx2. Finally, cortical domain shifts that characterize Emx2 mutants were rescued by sequestering excess FGF8 with a truncated FGF receptor construct. These findings begin to clarify the signaling network that patterns the neocortical area map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emx2 and FGF8 are expressed in complementary patterns at E9.
Figure 2: Gradients of gene expression in the early cortical primordium respond to FGF8 manipulations.
Figure 3: Anterior but not central overexpression of Emx2 shifted the barrel fields in primary somatosensory cortex.
Figure 4: Emx2 regulates FGF8/17 expression in the anterior cortical primordium.
Figure 5: FGF8/17 signaling regulates Pea3 gene subfamily expression in the cortical primordium.
Figure 6: Emx2 regulates functional FGF8/17 signaling in the cortical primordium.
Figure 7: Reducing excess FGF8/17 rescues gene expression shifts in the Emx2 mutant.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nauta, W.J.H. & Feirtag, M. Fundamental Neuroanatomy (W.H. Freeman, New York, 1986).

    Google Scholar 

  2. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Barbe, M.F. & Levitt, P. The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11, 519–533 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyashita-Lin, E.M., Hevner, R., Wassarman, K.M., Martinez, S. & Rubenstein, J.L.R. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa, Y., Johnson, J.E. & O'Leary, D.D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen-Tannoudji, M., Babinet, C. & Wassef, M. Early determination of a mouse somatosensory cortex marker. Nature 368, 460–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Arimatsu, Y., Ishida, M., Takiguchi-Hayashi, K. & Uratani, Y. Cerebral cortical specification by early potential restriction of progenitor cells and later phenotype control of postmitotic neurons. Development 126, 629–638 (1999).

    CAS  PubMed  Google Scholar 

  8. O'Leary, D.D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Garel, S., Huffman, K.J. & Rubenstein, J.L.R. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130, 1903–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Monuki, E.S. & Walsh, C.A. Mechanisms of cerebral cortical patterning in mice and humans. Nat. Neurosci. 4, 1199–1206 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ragsdale, C.W. & Grove, E.A. Patterning the mammalian cerebral cortex. Curr. Opin. Neurobiol. 11, 50–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Rubenstein, J.L.R. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Wolpert, L. One hundred years of positional information. Trends Genet. 12, 359–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bachler, M. & Neubuser, A. Expression of members of the Fgf family and their receptors during midfacial development. Mech. Dev. 100, 313–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Furuta, Y., Piston, D.W. & Hogan, B.L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  16. Crossley, P.H. & Martin, G.R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  17. Shimamura, K. & Rubenstein, J.L.R. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    CAS  PubMed  Google Scholar 

  18. Eagleson, K.L. & Levitt, P. Complex signaling responsible for molecular regionalization of the cerebral cortex. Cereb. Cortex 9, 562–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Grove, E.A., Tole, S., Limon, J., Yip, L. & Ragsdale, C.W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  20. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bishop, K.M., Goudreau, G. & O'Leary, D.D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Bishop, K.M., Rubenstein, J.L.R. & O'Leary, D.D. Distinct actions of Emx1, Emx2 and Pax6 in regulating the specification of areas in the developing neocortex. J. Neurosci. 22, 7627–7638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mallamaci, A., Muzio, L., Chan, C.H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat. Neurosci. 3, 679–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Muzio, L. et al. Emx2 and Pax6 control regionalization of the pre-neuronogenic cortical primordium. Cereb. Cortex 12, 129–139 (2002).

    Article  PubMed  Google Scholar 

  25. Fukuchi-Shimogori, T. & Grove, E.A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Cecchi, C. & Boncinelli, E. Emx homeogenes and mouse brain development. Trends Neurosci. 23, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Shimamura, K. & Rubenstein, J.L.R. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    CAS  PubMed  Google Scholar 

  28. Crossley, P.H., Martinez, S. & Martin, G.R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Shamim, H. et al. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945–959 (1999).

    CAS  PubMed  Google Scholar 

  30. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2, 99–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, W. et al. Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat. Neurosci. 4, 1175–1181 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Mallamaci, A. et al. EMX2 protein in the developing mouse brain and olfactory area. Mech. Dev. 77, 165–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, C., Tsai, S.Y. & Tsai, M.J. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev. 15, 2054–2059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Wong-Riley, M.T. & Welt, C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc. Natl. Acad. Sci. USA 77, 2333–2337 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, W., Shimamura, K., Rubenstein, J.L.R., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Maruoka, Y. et al. Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech. Dev. 74, 175–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Ornitz, D.M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, reviews 3005.1–3005.12 (2001).

    Article  Google Scholar 

  39. Xu, J., Liu, Z. & Ornitz, D.M. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127, 1833–1843 (2000).

    CAS  PubMed  Google Scholar 

  40. Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E. & Gruss, P. Dentate gyrus formation requires Emx2. Development 122, 3893–3898 (1996).

    CAS  PubMed  Google Scholar 

  41. Raible, F. & Brand, M. Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mech. Dev. 107, 105–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida, M. et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124, 101–111 (1997).

    CAS  PubMed  Google Scholar 

  43. Mackarehtschian, K., Lau, C.K., Caras, I. & McConnell, S.K. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb. Cortex. 9, 601–610 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Aoto, K., Nishimura, T., Eto, K. & Motoyama, J. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face and limb bud. Dev. Biol. 251, 320–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Theil, T., Alvarez-Bolado, G., Walter, A. & Ruther, U. Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126, 3561–3571 (1999).

    CAS  PubMed  Google Scholar 

  46. Tole, S., Ragsdale, C.W. & Grove, E.A. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes. Dev. Biol. 217, 254–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Mallamaci, A. et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J. Neurosci. 20, 1109–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tole, S. & Grove, E.A. Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. J. Neurosci. 21, 1580–1589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agarwala, S., Sanders, T.A. & Ragsdale, C.W. Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291, 2147–2150 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Grove, E.A., Kirkwood, T.B. & Price, J. Neuronal precursor cells in the rat hippocampal formation contribute to more than one cytoarchitectonic area. Neuron 8, 217–229 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Gruss for providing the Emx2 mutant mouse line, and the following for providing cDNAs: S. Aizawa (full-length coding Emx2), N. Itoh (FGF17), D. Ornitz (FGFR3), M.J. Tsai (COUP-TF1), D. Boyd (Pea3), S. McConnell (RORβ), M. Takeichi (Cdh6,8), T. Brown (ER81) and P. Gruss (Emx1 and Emx2). We thank S. Assimacopoulos, H.Y. Ng, S. Ye, J. Bevis and B.S. Glick for technical help and M. Yoshida, P. Mason, C.W. Ragsdale and A. Louvi for discussion. Supported by the National Institutes of Health, the March of Dimes Birth Defects Foundation and the Women's Council of the Brain Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A Grove.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuchi-Shimogori, T., Grove, E. Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6, 825–831 (2003). https://doi.org/10.1038/nn1093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing