Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Thalamus plays a central role in ongoing cortical functioning

Abstract

Several challenges to current views of thalamocortical processing are offered here. Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver and modulator. We suggest that driver inputs are the main conduits of information and that modulator inputs modify how driver inputs are processed. Different driver sources reveal two types of thalamic relays: first order relays receive subcortical driver input (for example, retinal input to the lateral geniculate nucleus), whereas higher order relays (for example, pulvinar) receive driver input from layer 5 of cortex and participate in cortico-thalamo-cortical (or transthalamic) circuits. These transthalamic circuits represent an unappreciated aspect of cortical functioning, which I discuss here. Direct corticocortical connections are often paralleled by transthalamic ones. Furthermore, driver inputs to thalamus, both first and higher order, typically arrive via branching axons, and the transthalamic branch often innervates subcortical motor centers, leading to the suggestion that these inputs to thalamus serve as efference copies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glutamatergic drivers and modulators in the lateral geniculate nucleus (LGN) showing inputs to geniculate relay cells.
Figure 2: Population data showing distributions of various parameters for driver and modulator inputs to thalamic and cortical cells.
Figure 3: Different circuits for layer 6 corticothalamic inputs involving the layer 6 cells, thalamic relay cells and local GABAergic neurons, which include both cells of the thalamic reticular nucleus (TRN) as well as interneurons.
Figure 4: Examples of branching axons of driver inputs to thalamus.
Figure 5: Two views of thalamocortical processing.

Similar content being viewed by others

References

  1. Alitto, H.J. & Usrey, W.M. Corticothalamic feedback and sensory processing. Curr. Opin. Neurobiol. 13, 440–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hubel, D.H. & Wiesel, T.N. Brain mechanisms of vision. Sci. Am. 241, 150–162 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Sherman, S.M. & Guillery, R.W. Thalamocortical Processing: Understanding the Messages that Link the Cortex to the World (MIT Press, 2013).

  4. Sherman, S.M. & Guillery, R.W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crandall, S.R., Cruikshank, S.J. & Connors, B.W. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86, 768–782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denman, D.J. & Contreras, D. Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. J. Neurosci. 35, 9265–9280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lam, Y.W. & Sherman, S.M. Activation of both Group I and Group II metabotropic glutamatergic receptors suppress retinogeniculate transmission. Neuroscience 242, 78–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Viaene, A.N., Petrof, I. & Sherman, S.M. Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. J. Neurosci. 31, 12738–12747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Horn, S.C., Erişir, A. & Sherman, S.M. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 416, 509–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed, B., Anderson, J.C., Douglas, R.J., Martin, K.A.C. & Nelson, J.C. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J. Comp. Neurol. 341, 39–49 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, T., Petrof, I. & Sherman, S.M. Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse cortex. J. Neurophysiol. 111, 2287–2297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Pasquale, R. & Sherman, S.M. A modulatory effect of the feedback from higher visual areas to V1 in the mouse. J. Neurophysiol. 109, 2618–2631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Pasquale, R. & Sherman, S.M. Modulatory effects of metabotropic glutamate receptors on local cortical circuits. J. Neurosci. 32, 7364–7372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, C.C. & Sherman, S.M. Intrinsic modulators of auditory thalamocortical transmission. Hear. Res. 287, 43–50 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sherman, S.M. The function of metabotropic glutamate receptors in thalamus and cortex. Neuroscientist 20, 136–149 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Lee, C.C. & Sherman, S.M. Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc. Natl. Acad. Sci. USA 107, 372–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tsumoto, T. & Suda, K. Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. J. Comp. Neurol. 193, 223–236 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Sirota, M.G., Swadlow, H.A. & Beloozerova, I.N. Three channels of corticothalamic communication during locomotion. J. Neurosci. 25, 5915–5925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, X., Bosking, W.H., White, L.E., Fitzpatrick, D. & Casagrande, V.A. Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. J. Neurophysiol. 94, 2748–2762 (2005).

    Article  PubMed  Google Scholar 

  20. Sherman, S.M. Functional organization of the W-,X-, and Y-cell pathways in the cat: a review and hypothesis. in Progress in Psychobiology and Physiological Psychology Vol. 11 (eds. Sprague, J.M. & Epstein, A.N.) 233–314 (Academic, 1985).

  21. Briggs, F. & Usrey, W.M. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lam, Y.W. & Sherman, S.M. Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cereb. Cortex 20, 13–24 (2010).

    Article  PubMed  Google Scholar 

  24. Lee, C.C., Lam, Y.W. & Sherman, S.M. Intracortical convergence of layer 6 neurons. Neuroreport 23, 736–740 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thomson, A.M. Neocortical layer 6, a review. Front. Neuroanat. 4, 13 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Lee, C.C. & Sherman, S.M. Glutamatergic inhibition in sensory neocortex. Cereb. Cortex 19, 2281–2289 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitchell, A.S. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci. Biobehav. Rev. 54, 76–88 (2015).

    Article  PubMed  Google Scholar 

  29. Kuramoto, E. et al. Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur. J. Neurosci. 33, 95–109 (2011).

    Article  PubMed  Google Scholar 

  30. Sakai, S.T., Inase, M. & Tanji, J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J. Comp. Neurol. 368, 215–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. McFarland, N.R. & Haber, S.N. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J. Neurosci. 22, 8117–8132 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Viaene, A.N., Petrof, I. & Sherman, S.M. Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc. Natl. Acad. Sci. USA 108, 18156–18161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Theyel, B.B., Llano, D.A. & Sherman, S.M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    CAS  PubMed  Google Scholar 

  34. Reichova, I. & Sherman, S.M. Somatosensory corticothalamic projections: distinguishing drivers from modulators. J. Neurophysiol. 92, 2185–2197 (2004).

    Article  PubMed  Google Scholar 

  35. Casanova, C., Merabet, L., Desautels, A. & Minville, K. Higher-order motion processing in the pulvinar. Prog. Brain Res. 134, 71–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Chalupa, L.M., Anchel, H. & Lindsley, D.B. Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. Exp. Neurol. 36, 449–462 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. Bender, D.B. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res. 279, 258–261 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Diamond, M.E., Armstrong-James, M. & Ebner, F.F. Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J. Comp. Neurol. 318, 462–476 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Andersen, R.A. & Cui, H. Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63, 568–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Seidemann, E., Zohary, E. & Newsome, W.T. Temporal gating of neural signals during performance of a visual discrimination task. Nature 394, 72–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Covic, E.N. & Sherman, S.M. Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cereb. Cortex 21, 2425–2441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Pasquale, R. & Sherman, S.M. Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. J. Neurosci. 31, 16494–16506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, C.C. & Sherman, S.M. Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. J. Neurophysiol. 100, 317–326 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Groh, A. et al. Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb. Cortex 24, 3167–3179 (2014).

    Article  PubMed  Google Scholar 

  48. Kelly, L.R., Li, J., Carden, W.B. & Bickford, M.E. Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus. J. Comp. Neurol. 464, 472–486 (2003).

    Article  PubMed  Google Scholar 

  49. Berman, R.A. & Wurtz, R.H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J. Neurosci. 30, 6342–6354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sommer, M.A. & Wurtz, R.H. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31, 317–338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crabtree, J.W., Collingridge, G.L. & Isaac, J.T.R. A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat. Neurosci. 1, 389–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Usrey, W.M., Reppas, J.B. & Reid, R.C. Specificity and strength of retinogeniculate connections. J. Neurophysiol. 82, 3527–3540 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Cleland, B.G., Dubin, M.W. & Levick, W.R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971).

    Article  CAS  Google Scholar 

  54. Bickford, M.E., Zhou, N., Krahe, T.E., Govindaiah, G. & Guido, W. Retinal and tectal “driver-Like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci. 35, 10523–10534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Usrey, W.M., Alonso, J.M. & Reid, R.C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Linden, R. & Perry, V.H. Massive retinotectal projection in rats. Brain Res. 272, 145–149 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Tamamaki, N., Uhlrich, D.J. & Sherman, S.M. Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin. J. Comp. Neurol. 354, 583–607 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Vaney, D.I., Levick, W.R. & Thibos, L.N. Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties. Exp. Brain Res. 44, 27–33 (1981).

    Article  CAS  PubMed  Google Scholar 

  60. Chalupa, L.M. & Thompson, I. Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique. Neurosci. Lett. 19, 13–19 (1980).

    Article  CAS  PubMed  Google Scholar 

  61. Bull, M.S. & Berkley, K.J. Differences in the neurones that project from the dorsal column nuclei to the diencephalon, pretectum, and the tectum in the cat. Somatosens. Res. 1, 281–300 (1984).

    Article  CAS  PubMed  Google Scholar 

  62. Veinante, P., Jacquin, M.F. & Deschênes, M. Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J. Comp. Neurol. 420, 233–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, C.C., Kishan, A.U. & Winer, J.A. Wiring of divergent networks in the central auditory system. Front. Neuroanat. 5, 46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shinoda, Y., Futami, T., Mitoma, H. & Yokota, J. Morphology of single neurones in the cerebello-rubrospinal system. Behav. Brain Res. 28, 59–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Ramon y Cajal, S Histologie du Système Nerveaux de l′Homme et des Vertébrés (Maloine, Paris, 1911).

  66. Petrof, I. & Sherman, S.M. Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J. Neurosci. 29, 7815–7819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guillery, R.W. Degeneration in the hypothalamic connexions of the albino rat. J. Anat. 91, 91–115 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsuo, S., Hosogai, M. & Nakao, S. Ascending projections of posterior canal-activated excitatory and inhibitory secondary vestibular neurons to the mesodiencephalon in cats. Exp. Brain Res. 100, 7–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Isu, N. et al. Extracellular recording of vestibulo-thalamic neurons projecting to the spinal cord in the cat. Neurosci. Lett. 104, 25–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Veinante, P., Lavallée, P. & Deschênes, M. Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J. Comp. Neurol. 424, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Bourassa, J. & Deschênes, M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66, 253–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Bourassa, J., Pinault, D. & Deschênes, M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci. 7, 19–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Deschênes, M., Bourassa, J. & Pinault, D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 664, 215–219 (1994).

    Article  PubMed  Google Scholar 

  74. Casanova, C. Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat's lateralis posterior-pulvinar complex: comparison with cortico-tectal cells. Exp. Brain Res. 96, 247–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Rockland, K.S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J. Comp. Neurol. 390, 515–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Kita, T. & Kita, H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32, 5990–5999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petrof, I., Viaene, A.N. & Sherman, S.M. Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices. J. Comp. Neurol. 520, 1678–1686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. von Graefe, A. Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln. Archiv für Opthlalmologie 1, 1–81 (1854).

    Google Scholar 

  79. Sperry, R.W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Psychol. 43, 482–489 (1950).

    Article  CAS  Google Scholar 

  80. von Holst, E. & Mittelstaedt, H. The reafference principle. Interaction between the central nervous system and the periphery. in Selected Papers of Erich von Holst: The Behavioural Physiology of Animals and Man 139–173 (Univ. of Miami Press, Coral Gables, Florida, USA, 1950).

  81. Wolpert, D.M. & Flanagan, J.R. Motor learning. Curr. Biol. 20, R467–R472 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Raastad, M. & Shepherd, G.M. Single-axon action potentials in the rat hippocampal cortex. J. Physiol. (Lond.) 548, 745–752 (2003).

    Article  CAS  Google Scholar 

  83. Cox, C.L., Denk, W., Tank, D.W. & Svoboda, K. Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc. Natl. Acad. Sci. USA 97, 9724–9728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hall, N.J. & Colby, C.L. Remapping for visual stability. Phil. Trans. R. Soc. Lond. B 366, 528–539 (2011).

    Article  Google Scholar 

  85. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duhamel, J.-R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Chauveau, F., Célérier, A., Ognard, R., Pierard, C. & Béracochéa, D. Effects of ibotenic acid lesions of the mediodorsal thalamus on memory: relationship with emotional processes in mice. Behav. Brain Res. 156, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Rafal, R.D. & Posner, M.I. Deficits in human visual spatial attention following thalamic lesions. Proc. Natl. Acad. Sci. USA 84, 7349–7353 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Means, L.W., Harrell, T.H., Mayo, E.S. & Alexander, G.B. Effects of dorsomedial thalamic lesions on spontaneous alternation, maze, activity and runway performance in the rat. Physiol. Behav. 12, 973–979 (1974).

    Article  CAS  PubMed  Google Scholar 

  90. Ford, J.M., Palzes, V.A., Roach, B.J. & Mathalon, D.H. Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr. Bull. 40, 804–812 (2014).

    Article  PubMed  Google Scholar 

  91. Pynn, L.K. & DeSouza, J.F. The function of efference copy signals: implications for symptoms of schizophrenia. Vision Res. 76, 124–133 (2013).

    Article  PubMed  Google Scholar 

  92. Feinberg, I. & Guazzelli, M. Schizophrenia--a disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness. Br. J. Psychiatry 174, 196–204 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants DC008794 and EY022338 from the US National Institutes of Health. I thank J. DeFelipe for providing the images used in Figure 4b,d and H. Kita for the image used in Figure 4c. I also thank R.A. Eatock, D. Freedman and P. Mason for comments on earlier drafts and R.W. Guillery for ongoing conversations with the author and contributions regarding all of the issues raised herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Murray Sherman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, S. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci 19, 533–541 (2016). https://doi.org/10.1038/nn.4269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing