Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-task connectivity reveals flexible hubs for adaptive task control

This article has been updated

Abstract

Extensive evidence suggests that the human ability to adaptively implement a wide variety of tasks is preferentially a result of the operation of a fronto-parietal brain network (FPN). We hypothesized that this network's adaptability is made possible by flexible hubs: brain regions that rapidly update their pattern of global functional connectivity according to task demands. Using recent advances in characterizing brain network organization and dynamics, we identified mechanisms consistent with the flexible hub theory. We found that the FPN's brain-wide functional connectivity pattern shifted more than those of other networks across a variety of task states and that these connectivity patterns could be used to identify the current task. Furthermore, these patterns were consistent across practiced and novel tasks, suggesting that reuse of flexible hub connectivity patterns facilitates adaptive (novel) task performance. Together, these findings support a central role for fronto-parietal flexible hubs in cognitive control and adaptive implementation of task demands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual illustration of task-control flexible hubs in the FPN.
Figure 2: The permuted rule operations behavioral procedure, in combination with recent advances in task-state connectivity methods, allows detection of flexible connectivity across a wide variety of task states.
Figure 3: Graph theoretical brain network partition and context-dependent functional connectivity estimation.
Figure 4: GVC, a measure of global variable connectivity, is highest for the FPN.
Figure 5: FPN's variable connectivity is truly global.
Figure 6: The FPN's connectivity varies systematically, suggesting the previous results were not simply a result of network noise properties and that FPN connectivity likely represents task information.
Figure 7: Decoding of task identity from FPN's context-dependent connectivity patterns.

Similar content being viewed by others

Change history

  • 05 August 2013

    In the version of this article initially published, in the sentence following the equation in Online Methods, an â character was substituted for the β. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  PubMed  Google Scholar 

  2. Cole, M.W. & Schneider, W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37, 343–360 (2007).

    Article  PubMed  Google Scholar 

  3. Niendam, T.A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. (2012).

  4. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole, M.W., Laurent, P. & Stocco, A. Rapid instructed task learning: a new window into the human brain's unique capacity for flexible cognitive control. Cogn. Affect. Behav. Neurosci. 13, 1–22 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cole, M.W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T.S. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32, 8988–8999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cole, M.W., Bagic, A., Kass, R. & Schneider, W. Prefrontal dynamics underlying rapid instructed task learning reverse with practice. J. Neurosci. 30, 14245–14254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McLaren, D.G., Ries, M.L., Xu, G. & Johnson, S.C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61, 1277–1286 (2012).

    Article  PubMed  Google Scholar 

  9. Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinzle, J., Wenzel, M.A. & Haynes, J.D. Visuomotor functional network topology predicts upcoming tasks. J. Neurosci. 32, 9960–9968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller, E.K. & Cohen, J. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Power, J.D. & Petersen, S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 23, 223–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dosenbach, N.U.F. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakai, K. Task set and prefrontal cortex. Annu. Rev. Neurosci. 31, 219–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103, 19518–19523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakai, K. & Passingham, R.E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 6, 75–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sakai, K. & Passingham, R.E. Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. J. Neurosci. 26, 1211–1218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuster, J.M., Bauer, R. & Jervey, J. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330, 299–307 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Gazzaley, A. et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb. Cortex 17, i125–i135 (2007).

    Article  PubMed  Google Scholar 

  21. Repovš, G. & Barch, D.M. Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front. Hum. Neurosci. 6, 137 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buckner, R.L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole, M.W., Pathak, S. & Schneider, W. Identifying the brain's most globally connected regions. Neuroimage 49, 3132–3148 (2010).

    Article  PubMed  Google Scholar 

  24. Cole, M.W., Etzel, J.A., Zacks, J.M., Schneider, W. & Braver, T.S. Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. Front. Hum. Neurosci. 5, 142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singley, M.K. & Anderson, J.R. The transfer of text-editing skill. Int. J. Man Mach. Stud. 22, 403–423 (1985).

    Article  Google Scholar 

  26. Hebb, D.O. The Organization of Behavior: a Neuropsychological Theory (Wiley, 1949).

  27. Sporns, O., Tononi, G. & Edelman, G.M. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13, 909–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yeo, B.T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  29. Allen, E.A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex published online, doi:10.1093/cercor/bhs352 (11 November 2012).

  30. Guimerà, R., Mossa, S., Turtschi, A. & Amaral, L.A.N. The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles. Proc. Natl. Acad. Sci. USA 102, 7794 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kriegeskorte, N. Representational similarity analysis – connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Todd, M.T., Nystrom, L.E. & Cohen, J.D. Confounds in multivariate pattern analysis: theory and rule representation case study. Neuroimage 77, 157–165 (2013).

    Article  PubMed  Google Scholar 

  33. Wig, G.S., Schlaggar, B.L. & Petersen, S.E. Concepts and principles in the analysis of brain networks. Ann. NY Acad. Sci. 1224, 126–146 (2011).

    Article  PubMed  Google Scholar 

  34. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Article  PubMed  Google Scholar 

  36. Woolgar, A., Thompson, R., Bor, D. & Duncan, J. Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. Neuroimage 56, 744–752 (2011).

    Article  PubMed  Google Scholar 

  37. Dumontheil, I., Thompson, R. & Duncan, J. Assembly and use of new task rules in fronto-parietal cortex. J. Cogn. Neurosci. 23, 168–182 (2011).

    Article  PubMed  Google Scholar 

  38. Botvinick, M.M., Braver, T., Barch, D., Carter, C. & Cohen, J. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Seeley, W.W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desimone, R. Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B 353, 1245–1255 (1998).

    Article  CAS  Google Scholar 

  41. Shallice, T. & Burgess, P.W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    Article  PubMed  Google Scholar 

  42. Urfer-Parnas, A., Lykke Mortensen, E., Sæbye, D. & Parnas, J. Pre-morbid IQ in mental disorders: a Danish draft-board study of 7486 psychiatric patients. Psychol. Med. 40, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2, 820–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Cromer, J.A., Roy, J.E. & Miller, E.K. Representation of multiple, independent categories in the primate prefrontal cortex. Neuron 66, 796–807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buschman, T.J., Denovellis, E.L., Diogo, C., Bullock, D. & Miller, E.K. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fox, M.D. & Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Schneider, W., Eschman, A. & Zuccolotto, A. E-Prime: User's Guide (Psychology Software, 2002).

  48. Cox, R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Desikan, R.S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  50. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B. & Bandettini, P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    Article  PubMed  Google Scholar 

  51. Kim, J. & Horwitz, B. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions. Magn. Reson. Imaging 26, 583–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Friston, K.J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  53. O'Reilly, J.X., Woolrich, M.W., Behrens, T.E.J., Smith, S.M. & Johansen-Berg, H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc. Cogn. Affect. Neurosci. 7, 604–609 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Handwerker, D.A., Ollinger, J. & D'Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  55. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  56. Dosenbach, N.U.F. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen, A.L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

    Article  PubMed  Google Scholar 

  58. Chang, C.C. & Lin, C.J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Petersen, D. Bassett and J. Etzel for helpful feedback and suggestions during preparation of this manuscript. We also thank W. Schneider for access to data from his laboratory. Our work was supported by the US National Institutes of Health under awards K99MH096801 (M.W.C.), DP5OD012109-01 (A.A.) and a Brain and Behavior Research Foundation (NARSAD) Young Investigator Award (A.A.).

Author information

Authors and Affiliations

Authors

Contributions

M.W.C., T.S.B., J.R.R. and J.D.P. planned and conducted data analyses. M.W.C., T.S.B., J.D.P., J.R.R., G.R. and A.A. wrote the manuscript. All of the authors discussed data analysis choices, the results and the manuscript.

Corresponding author

Correspondence to Michael W Cole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–4 and Supplementary Tables 1–9 (PDF 1136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, M., Reynolds, J., Power, J. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16, 1348–1355 (2013). https://doi.org/10.1038/nn.3470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing