Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity

Abstract

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expression is robustly induced by activity, and Arc protein localizes to both active synapses and the nucleus. Whereas its synaptic function has been examined, it is not clear why or how Arc is localized to the nucleus. We found that murine Arc nuclear expression is regulated by synaptic activity in vivo and in vitro. We identified distinct regions of Arc that control its localization, including a nuclear localization signal, a nuclear retention domain and a nuclear export signal. Arc localization to the nucleus promotes an activity-induced increase in the expression of promyelocytic leukemia nuclear bodies, which decreases GluA1 (also called Gria1) transcription and synaptic strength. We further show that Arc nuclear localization regulates homeostatic plasticity. Thus, Arc mediates the homeostatic response to increased activity by translocating to the nucleus, increasing promyelocytic leukemia protein expression and decreasing GluA1 transcription, ultimately downscaling synaptic strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arc becomes enriched in neuronal nuclei in mice after novel environment exposure.
Figure 2: Arc has two regions that regulate nuclear enrichment.
Figure 3: Arc contains an NES.
Figure 4: Activity regulates Arc nuclear import and export.
Figure 5: Nuclear Arc regulates synaptic strength.
Figure 6: Nuclear Arc regulates GluA1 transcription.
Figure 7: Arc mediates the activity-induced upregulation of PML-NBs, which decreases GluA1 transcription.
Figure 8: Arc localization to the nucleus mediates homeostatic plasticity.

Similar content being viewed by others

References

  1. Guzowski, J.F. et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Messaoudi, E. et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Park, S. et al. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Waung, M.W., Pfeiffer, B.E., Nosyreva, E.D., Ronesi, J.A. & Huber, K.M. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59, 84–97 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shepherd, J.D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Béïque, J.C., Na, Y., Kuhl, D., Worley, P.F. & Huganir, R.L. Arc-dependent synapse-specific homeostatic plasticity. Proc. Natl. Acad. Sci. USA 108, 816–821 (2011).

    PubMed  Google Scholar 

  7. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    CAS  PubMed  Google Scholar 

  8. Rao, V.R. et al. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat. Neurosci. 9, 887–895 (2006).

    CAS  PubMed  Google Scholar 

  9. Pintchovski, S.A., Peebles, C.L., Kim, H.J., Verdin, E. & Finkbeiner, S. The serum response factor and a putative novel transcription factor regulate expression of the immediate-early gene Arc/Arg3.1 in neurons. J. Neurosci. 29, 1525–1537 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramírez-Amaya, V. et al. Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci. 25, 1761–1768 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. Kawashima, T. et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc. Natl. Acad. Sci. USA 106, 316–321 (2009).

    CAS  PubMed  Google Scholar 

  12. Steward, O., Wallace, C.S., Lyford, G.L. & Worley, P.F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751 (1998).

    CAS  PubMed  Google Scholar 

  13. Huang, F., Chotiner, J.K. & Steward, O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J. Neurosci. 27, 9054–9067 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bloomer, W.A., Vandongen, H.M. & Vandongen, A.M. Arc/Arg3.1 translation is controlled by convergent N-Methyl-D-aspartate and Gs-coupled receptor signaling pathways. J. Biol. Chem. 283, 582–592 (2008).

    CAS  PubMed  Google Scholar 

  15. Panja, D. et al. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J. Biol. Chem. 284, 31498–31511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Greer, P.L. et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140, 704–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodríguez, J.J. et al. Long-term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia. Eur. J. Neurosci. 21, 2384–2396 (2005).

    PubMed  Google Scholar 

  18. Moga, D.E. et al. Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125, 7–11 (2004).

    CAS  PubMed  Google Scholar 

  19. Bloomer, W.A., VanDongen, H.M. & VanDongen, A.M. Activity-regulated cytoskeleton-associated protein Arc/Arg3.1 binds to spectrin and associates with nuclear promyelocytic leukemia (PML) bodies. Brain Res. 1153, 20–33 (2007).

    CAS  PubMed  Google Scholar 

  20. Peebles, C.L. et al. Arc regulates spine morphology and maintains network stability in vivo. Proc. Natl. Acad. Sci. USA 107, 18173–18178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. & Cline, H.T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    PubMed  PubMed Central  Google Scholar 

  23. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    CAS  PubMed  Google Scholar 

  24. Borden, K.L. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell Biol. 22, 5259–5269 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bernardi, R. & Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8, 1006–1016 (2007).

    CAS  PubMed  Google Scholar 

  26. Regad, T., Bellodi, C., Nicotera, P. & Salomoni, P. The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat. Neurosci. 12, 132–140 (2009).

    CAS  PubMed  Google Scholar 

  27. Skinner, P.J. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974 (1997).

    CAS  PubMed  Google Scholar 

  28. Chai, Y., Koppenhafer, S.L., Shoesmith, S.J., Perez, M.K. & Paulson, H.L. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682 (1999).

    CAS  PubMed  Google Scholar 

  29. Yamada, M. et al. Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann. Neurol. 49, 14–23 (2001).

    CAS  PubMed  Google Scholar 

  30. Yamada, M. et al. Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am. J. Pathol. 159, 1785–1795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    CAS  PubMed  Google Scholar 

  32. Tyler, W.J., Alonso, M., Bramham, C.R. & Pozzo-Miller, L.D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. Mem. 9, 224–237 (2002).

    PubMed  Google Scholar 

  33. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98 (2003).

    PubMed  PubMed Central  Google Scholar 

  34. Borges, K. & Dingledine, R. Functional organization of the GluR1 glutamate receptor promoter. J. Biol. Chem. 276, 25929–25938 (2001).

    CAS  PubMed  Google Scholar 

  35. St-Germain, J.R., Chen, J. & Li, Q. Involvement of PML nuclear bodies in CBP degradation through the ubiquitin-proteasome pathway. Epigenetics 3, 342–349 (2008).

    PubMed  Google Scholar 

  36. Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 102, 3840–3845 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, H.R. et al. Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J. Virol. 78, 6527–6542 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Everett, R.D. et al. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J. Virol. 80, 7995–8005 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao, M. et al. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex. J. Neurosci. 30, 7168–7178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lyford, G.L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    CAS  PubMed  Google Scholar 

  41. Zhong, S., Salomoni, P. & Pandolfi, P.P. The transcriptional role of PML and the nuclear body. Nat. Cell Biol. 2, E85–E90 (2000).

    CAS  PubMed  Google Scholar 

  42. Anggono, V., Clem, R.L. & Huganir, R.L. PICK1 loss of function occludes homeostatic synaptic scaling. J. Neurosci. 31, 2188–2196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ibata, K., Sun, Q. & Turrigiano, G.G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57, 819–826 (2008).

    CAS  PubMed  Google Scholar 

  44. Goold, C.P. & Nicoll, R.A. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68, 512–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, Q. & Turrigiano, G.G. PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down. J. Neurosci. 31, 6800–6808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alberi, L. et al. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69, 437–444 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bramham, C.R. et al. The Arc of synaptic memory. Ex. Brain Res. 200, 125–140 (2010); erratum 209, 307 (2011).

    Google Scholar 

  48. Korb, E. & Finkbeiner, S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 34, 591–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, K.H. et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126, 389–402 (2006).

    CAS  PubMed  Google Scholar 

  50. Sorg, G. & Stamminger, T. Mapping of nuclear localization signals by simultaneous fusion to green fluorescent protein and to β-galactosidase. Biotechniques 26, 858–862 (1999).

    CAS  PubMed  Google Scholar 

  51. Henderson, B.R. & Eleftheriou, A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp. Cell Res. 256, 213–224 (2000).

    CAS  PubMed  Google Scholar 

  52. Boutell, C., Orr, A. & Everett, R.D. PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J. Virol. 77, 8686–8694 (2003).

    PubMed  PubMed Central  Google Scholar 

  53. Brough, D., Bhatti, F. & Irvine, R.F. Mobility of proteins associated with the plasma membrane by interaction with inositol lipids. J. Cell Sci. 118, 3019–3025 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Truant (McMaster University) for the GFP–β-gal construct, B. Henderson (University of Sydney) for the GFP-NLS-NES construct, R. Dingledine (Emory University) for the GluA1-luciferase and GluA2-luciferase constructs, P. Pandolfi (Sloan-Kettering Institute) for the eGFP-PML construct, D. Bredt (University of California San Francisco) for the eGFP-PSD95 construct, R. Everett (MRC–Universit of Glasgow Centre for Virus Research) for the PML and ICP0 construct and J. Ahn (Sungkyunkwan University School of Medicine) for the IE1 constructs. We thank members of the Finkbeiner lab, L. Jan, R. Edwards and N. Krogan for helpful suggestions and G. Howard for editorial input. E.K. was supported by a Ruth L. Kirschstein Fellowship (5 F31 MH087009). Primary support for this work was provided by the National Institute of Neurological Disease and Stroke (2 R01 NS39074), the National Institute on Aging (2 P01 AG022074) and the J. David Gladstone Institutes (S.F.), as well as the Keck Foundation (S.F.). The animal care facility was partly supported by a US National Institutes of Health Extramural Research Facilities Improvement Project (RR018928).

Author information

Authors and Affiliations

Authors

Contributions

E.K. and S.F. designed the experiments. E.K. performed experiments. C.L.W. found Pat7 and created the Arc antiserum. R.N.D. contributed to luciferase assays. K.L.L. contributed to FRAP experiments. S.F. supervised the project. E.K. and S.F. wrote the manuscript.

Corresponding author

Correspondence to Steven Finkbeiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korb, E., Wilkinson, C., Delgado, R. et al. Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat Neurosci 16, 874–883 (2013). https://doi.org/10.1038/nn.3429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing