Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circuit level defects in the developing neocortex of Fragile X mice

Abstract

Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex. Unanesthetized Fmr1−/− mice exhibited abnormally high synchrony of neocortical network activity, especially during the first two postnatal weeks. Neuronal firing rates were threefold higher in Fmr1−/− mice than in wild-type mice during whole-cell recordings manifesting Up/Down states (slow-wave sleep, quiet wakefulness), probably as a result of a higher firing probability during Up states. Combined electroencephalography and calcium imaging experiments confirmed that neurons in mutant mice had abnormally high firing and synchrony during sleep. We conclude that cortical networks in FXS are hyperexcitable in a brain state–dependent manner during a critical period for experience-dependent plasticity. These state-dependent network defects could explain the intellectual, sleep and sensory integration dysfunctions associated with FXS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delayed network desynchronization in the neocortex of unanesthetized Fmr1−/− mice.
Figure 2: A higher proportion of L2/3 neurons are recruited to peaks of synchrony in unanesthetized Fmr1−/− mice.
Figure 3: Elevated firing rates in unanesthetized Fmr1−/− mice during Up/Down states.
Figure 4: Higher probability of neuronal firing during Up states in Fmr1−/− mice.
Figure 5: Fmr1−/− mice exhibit abnormal modulation of neuronal activity in different brain states.
Figure 6: The synchrony of L2/3 cortical pyramidal neurons is not modulated by anesthesia in Fmr1−/− mice.

Similar content being viewed by others

References

  1. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    CAS  PubMed  Google Scholar 

  2. Gilbert, C.D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron 54, 677–696 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Crochet, S. & Petersen, C.C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ji, D. & Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rapin, I. & Katzman, R. Neurobiology of autism. Ann. Neurol. 43, 7–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Geschwind, D.H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Portera-Cailliau, C. Which comes first in Fragile X syndrome, dendritic spine dysgenesis or defects in circuit pasticity? Neuroscientist 18, 28–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Olmos-Serrano, J.L. et al. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J. Neurosci. 30, 9929–9938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Curia, G., Papouin, T., Seguela, P. & Avoli, M. Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb. Cortex 19, 1515–1520 (2009).

    Article  PubMed  Google Scholar 

  12. Gibson, J.R., Bartley, A.F., Hays, S.A. & Huber, K.M. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 100, 2615–2626 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Testa-Silva, G. et al. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb. Cortex 22, 1333–1342 (2012).

    Article  PubMed  Google Scholar 

  14. Miller, L.J. et al. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: a preliminary report. Am. J. Med. Genet. 83, 268–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Golshani, P. et al. Internally mediated developmental desynchronization of neocortical network activity. J. Neurosci. 29, 10890–10899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Rochefort, N.L. et al. Sparsification of neuronal activity in the visual cortex at eye opening. Proc. Natl. Acad. Sci. USA 106, 15049–15054 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cruz-Martín, A., Crespo, M. & Portera-Cailliau, C. Delayed stabilization of dendritic spines in fragile X mice. J. Neurosci. 30, 7793–7803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bureau, I., Shepherd, G.M. & Svoboda, K. Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knockout mice. J. Neurosci. 28, 5178–5188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harlow, E.G. et al. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 65, 385–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stern, E.A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31, 305–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Steriade, M., Nunez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Constantinople, C.M. & Bruno, R.M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cowan, R.L. & Wilson, C.J. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71, 17–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Hays, S.A., Huber, K.M. & Gibson, J.R. Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry. J. Neurosci. 31, 14223–14234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, C.Y., Poo, M.M. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veasey, S.C. et al. An automated system for recording and analysis of sleep in mice. Sleep 23, 1025–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Tanelian, D.L., Kosek, P., Mody, I. & MacIver, M.B. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Franks, N.P. & Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Pfeiffer, B.E. & Huber, K.M. The state of synapses in fragile X syndrome. Neuroscientist 15, 549–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassell, G.J. & Warren, S.T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olshausen, B.A. & Field, D.J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Musumeci, S.A. et al. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Van der Molen, M.J. & Van der Molen, M.W. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. Biol. Psychol. 92, 216–219 (2013).

    Article  PubMed  Google Scholar 

  37. He, C.X. & Portera-Cailliau, C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience published online, doi:10.1016/j.neuroscience.2012.03.049 (20 April 2012).

  38. D'Hulst, C. & Kooy, R.F. The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci. 30, 425–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. LeBlanc, J.J. & Fagiolini, M. Autism: a “critical period” disorder? Neural Plast. 2011, 921680 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meredith, R.M., Dawitz, J. & Kramvis, I. Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci. 35, 335–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Kronk, R. et al. Prevalence, nature and correlates of sleep problems among children with fragile X syndrome based on a large scale parent survey. Sleep 33, 679–687 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J. et al. Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am. J. Hum. Genet. 83, 43–52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bushey, D., Tononi, G. & Cirelli, C. The Drosophila fragile X mental retardation gene regulates sleep need. J. Neurosci. 29, 1948–1961 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castro-Alamancos, M.A. Cortical up and activated states: implications for sensory information processing. Neuroscientist 15, 625–634 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hagerman, R., Hoem, G. & Hagerman, P. Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol. Autism 1, 12 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, L., He, J., Jugloff, D.G. & Eubanks, J.H. The MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability. Hippocampus 18, 294–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Markram, K. & Markram, H. The intense world theory: a unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 4, 224 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. El Idrissi, A. et al. Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Gentet, L.J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Selby, L., Zhang, C. & Sun, Q.Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).

  52. Golshani, P. & Portera-Cailliau, C. In vivo 2-photon calcium imaging in layer 2/3 of mice. J. Vis. Exp. 13, 681 (2008).

    Google Scholar 

  53. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guizar-Sicairos, M., Thurman, S.T. & Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article  PubMed  Google Scholar 

  55. Yaksi, E. & Friedrich, R.W. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods 3, 377–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Mitra, P. & Bokil, H. Observed Brain Dynamics (Oxford University Press, New York, 2008).

Download references

Acknowledgements

We thank D. Buonomano, C. Houser, I. Mody and R. Mostany, as well as D. Cantu for helpful discussions and/or valuable comments on the manuscript. We also thank A. Bragin and M. Blumberg for help with EEG recordings and interpretation, J. Gornbein and D. Markovich for help with statistical analyses, and W. Greenough for providing the Fmr1−/− mice. This work was supported by grants from the National Institute of Child Health and Human Development (R01HD054453), the National Institute of Neurological Disorders and Stroke (RC1NS068093), the FRAXA Research Foundation and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.T.G. and C.P.-C. conceived the project and designed the experiments. J.T.G., J.E.A. and P.G. conducted the experiments and analyzed the data. J.T.G. and C.P.-C. prepared the figures and wrote the manuscript. C.P.-C. supervised the project.

Corresponding author

Correspondence to Carlos Portera-Cailliau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, J., Anstey, J., Golshani, P. et al. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci 16, 903–909 (2013). https://doi.org/10.1038/nn.3415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing