Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing perceptual decisions in rodents

Abstract

The study of perceptual decision-making offers insight into how the brain uses complex, sometimes ambiguous information to guide actions. Understanding the underlying processes and their neural bases requires that one pair recordings and manipulations of neural activity with rigorous psychophysics. Though this research has been traditionally performed in primates, it seems increasingly promising to pursue it at least partly in mice and rats. However, rigorous psychophysical methods are not yet as developed for these rodents as they are for primates. Here we give a brief overview of the sensory capabilities of rodents and of their cortical areas devoted to sensation and decision. We then review methods of psychophysics, focusing on the technical issues that arise in their implementation in rodents. These methods represent a rich set of challenges and opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Areas and connections in the mouse cortex.
Figure 2: Analyzing psychophysical data with signal detection theory.
Figure 3: Techniques for rodent psychophysics.
Figure 4: Interpreting psychometric curves.

Similar content being viewed by others

References

  1. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scanziani, M. & Hausser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Peron, S. & Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Zeng, H. & Madisen, L. Mouse transgenic approaches in optogenetics. Prog. Brain Res. 196, 193–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawkins, R. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution (Houghton Mifflin, Boston, 2004).

  11. Krubitzer, L. The magnificent compromise: cortical field evolution in mammals. Neuron 56, 201–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q. & Burkhalter, A. Area map of mouse visual cortex. J. Comp. Neurol. 502, 339–357 (2007).

    Article  PubMed  Google Scholar 

  13. Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L. & Reid, R.C. Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Marshel, J.H., Garrett, M.E., Nauhaus, I. & Callaway, E.M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  16. Kepecs, A., Uchida, N., Zariwala, H.A. & Mainen, Z.F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Felsen, G. & Mainen, Z.F. Midbrain contributions to sensorimotor decision making. J. Neurophysiol. 108, 135–147 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Petersen, C.C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Connor, D.H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Huberman, A.D. & Niell, C.M. What can mice tell us about how vision works? Trends Neurosci. 34, 464–473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G., King, J.A., Burgess, N. & O'Keefe, J. How vision and movement combine in the hippocampal place code. Proc. Natl. Acad. Sci. USA 110, 378–383 (2013).

    Article  PubMed  Google Scholar 

  24. Zoccolan, D., Oertelt, N., DiCarlo, J.J. & Cox, D.D. A rodent model for the study of invariant visual object recognition. Proc. Natl. Acad. Sci. USA 106, 8748–8753 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tafazoli, S., Di Filippo, A. & Zoccolan, D. Transformation-tolerant object recognition in rats revealed by visual priming. J. Neurosci. 32, 21–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hut, R.A., Pilorz, V., Boerema, A.S., Strijkstra, A.M. & Daan, S. Working for food shifts nocturnal mouse activity into the day. PLoS ONE 6, e17527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129 (2011).

    Article  PubMed  Google Scholar 

  28. Kiani, R., Hanks, T.D. & Shadlen, M.N. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28, 3017–3029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raposo, D., Sheppard, J.P., Schrater, P.R. & Churchland, A.K. Multisensory decision-making in rats and humans. J. Neurosci. 32, 3726–3735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Navalpakkam, V., Koch, C., Rangel, A. & Perona, P. Optimal reward harvesting in complex perceptual environments. Proc. Natl. Acad. Sci. USA 107, 5232–5237 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheppard, J.P., Raposo, D. & Churchland, A.K. Dynamic weighting of multisensory stimuli shapes decision-making in rodents and humans. J. Vis. 13 (6), 4 (2013).

    Article  Google Scholar 

  33. Brunton, B.W., Botvinick, M.M. & Brody, C.D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kolb, B. & Walkey, J. Behavioural and anatomical studies of the posterior parietal cortex in the rat. Behav. Brain Res. 23, 127–145 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Reep, R.L., Chandler, H.C., King, V. & Corwin, J.V. Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp. Brain Res. 100, 67–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Save, E. & Poucet, B. Role of the parietal cortex in long-term representation of spatial information in the rat. Neurobiol. Learn. Mem. 91, 172–178 (2009).

    Article  PubMed  Google Scholar 

  37. Nitz, D.A. Spaces within spaces: rat parietal cortex neurons register position across three reference frames. Nat. Neurosci. 15, 1365–1367 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Whitlock, J.R., Pfuhl, G., Dagslott, N., Moser, M.B. & Moser, E.I. Functional split between parietal and entorhinal cortices in the rat. Neuron 73, 789–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, K. Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex. J. Neurophysiol. 82, 2503–2517 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preuss, T.M. Do rats have a prefrontal cortex? The Rose-Woosley-Akert program reconsidered. J. Cogn. Neurosci. 7, 1–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Uylings, H.B., Groenewegen, H.J. & Kolb, B. Do rats have a prefrontal cortex? Behav. Brain Res. 146, 3–17 (2003).

    Article  PubMed  Google Scholar 

  43. Kesner, R.P. & Churchwell, J.C. An analysis of rat prefrontal cortex in mediating executive function. Neurobiol. Learn. Mem. 96, 417–431 (2011).

    Article  PubMed  Google Scholar 

  44. Grinband, J., Hirsch, J. & Ferrera, V.P. A neural representation of categorization uncertainty in the human brain. Neuron 49, 757–763 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Schoenbaum, G. & Roesch, M. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47, 633–636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sul, J.H., Kim, H., Huh, N., Lee, D. & Jung, M.W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 449–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sinnamon, H.M. & Galer, B.S. Head movements elicited by electrical stimulation of the anteromedial cortex of the rat. Physiol. Behav. 33, 185–190 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Erlich, J.C., Bialek, M. & Brody, C.D. A cortical substrate for memory-guided orienting in the rat. Neuron 72, 330–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sul, J.H., Jo, S., Lee, D. & Jung, M.W. Role of rodent secondary motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–1208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Narayanan, N.S. & Laubach, M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52, 921–931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Platt, M.L. & Hayden, B. Learning: not just the facts, ma'am, but the counterfactuals as well. PLoS Biol. 9, e1001092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kvitsiani, D. & Kepecs, A. Distinct behavioural correlates and network interactions of two interneuron classes in mouse prefrontal cortex. Nature (in the press).

  54. Balleine, B.W., Delgado, M.R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clark, L., Cools, R. & Robbins, T.W. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn. 55, 41–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Everitt, B.J. et al. The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann. NY Acad. Sci. 1121, 576–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Horwitz, G.D., Batista, A.P. & Newsome, W.T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    Article  PubMed  Google Scholar 

  58. Kim, B. & Basso, M.A. Saccade target selection in the superior colliculus: a signal detection theory approach. J. Neurosci. 28, 2991–3007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

  60. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romo, R. & Salinas, E. Touch and go: decision-making mechanisms in somatosensation. Annu. Rev. Neurosci. 24, 107–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Stüttgen, M.C., Schwarz, C. & Jakel, F. Mapping spikes to sensations. Front. Neurosci. 5, 125 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Andermann, M.L., Kerlin, A.M. & Reid, R.C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Smear, M., Shusterman, R., O'Connor, R., Bozza, T. & Rinberg, D. Perception of sniff phase in mouse olfaction. Nature 479, 397–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Histed, M.H., Carvalho, L.A. & Maunsell, J.H. Psychophysical measurement of contrast sensitivity in the behaving mouse. J. Neurophysiol. 107, 758–765 (2012).

    Article  PubMed  Google Scholar 

  66. Abraham, N.M. et al. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004).

    CAS  PubMed  Google Scholar 

  67. Houweling, A.R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Meier, P. & Reinagel, P. Rat performance on visual detection task modeled with divisive normalization and adaptive decision thresholds. J. Vis. 11 (9): 1 (2011).

    Article  PubMed  Google Scholar 

  69. Uchida, N. & Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jaramillo, S. & Zador, A.M. The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat. Neurosci. 14, 246–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Znamenskiy, P. & Zador, A.M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature doi:10.1038/nature12077 (1 May 2013).

  72. Sanders, J.I. & Kepecs, A. Choice ball: a response interface for two-choice psychometric discrimination in head-fixed mice. J. Neurophysiol. 108, 3416–3423 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lepora, N.F. et al. Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination. J. R. Soc. Interface 9, 1517–1528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brunton, B.W., Botvinick, M.M. & Brody, C.D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (5 April 2013).

  75. Schwarz, C. et al. The head-fixed behaving rat–procedures and pitfalls. Somatosens. Mot. Res. 27, 131–148 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Resulaj, A., Kiani, R., Wolpert, D.M. & Shadlen, M.N. Changes of mind in decision-making. Nature 461, 263–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Otazu, G.H., Tai, L.H., Yang, Y. & Zador, A.M. Engaging in an auditory task suppresses responses in auditory cortex. Nat. Neurosci. 12, 646–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kerr, J.N. & Nimmerjahn, A. Functional imaging in freely moving animals. Curr. Opin. Neurobiol. 22, 45–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Sparks, D.L. Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr. Opin. Neurobiol. 9, 698–707 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Hölscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H.A. Rats are able to navigate in virtual environments. J. Exp. Biol. 208, 561–569 (2005).

    Article  PubMed  Google Scholar 

  81. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, S.H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kato, H.K., Chu, M.W., Isaacson, J.S. & Komiyama, T. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76, 962–975 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Merten, K. & Nieder, A. Active encoding of decisions about stimulus absence in primate prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA 109, 6289–6294 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bennur, S. & Gold, J.I. Distinct representations of a perceptual decision and the associated oculomotor plan in the monkey lateral intraparietal area. J. Neurosci. 31, 913–921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Newton, J.R., Ellsworth, C., Miyakawa, T., Tonegawa, S. & Sur, M. Acceleration of visually cued conditioned fear through the auditory pathway. Nat. Neurosci. 7, 968–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  91. Prusky, G.T., West, P.W. & Douglas, R.M. Behavioral assessment of visual acuity in mice and rats. Vision Res. 40, 2201–2209 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Witten, I.B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bourne, M.C., Campbell, D.A. & Tansley, K. Hereditary degeneration of the rat retina. Br. J. Ophthalmol. 22, 613–623 (1938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chambers, R.A., Moore, J., McEvoy, J.P. & Levin, E.D. Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15, 587–594 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Umeda, T. et al. Evaluation of Pax6 mutant rat as a model for autism. PLoS ONE 5, e15500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fetsch, C.R., Turner, A.H., DeAngelis, G.C. & Angelaki, D.E. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29, 15601–15612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ng, L. et al. Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. Methods 50, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Macmillan, N.A. & Creelman, C.D. Detection Theory: A User's Guide (Lawrence Erlbaum, Mahwah, New Jersey, USA, 2005).

Download references

Acknowledgements

We thank A. Kepecs, A. Zador and L. Busse for comments. M.C.'s research is supported by the European Research Council, by the Wellcome Trust, and by the GlaxoSmithKline/Fight for Sight Chair in Visual Neuroscience. A.K.C.'s research is supported by the US National Eye Institute (grants EY022979 and EY019072), the US National Science Foundation, the McKnight Foundation, the John Merck Fund, the Chapman Foundation and the Marie Robertson Memorial Fund of Cold Spring Harbor Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K Churchland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carandini, M., Churchland, A. Probing perceptual decisions in rodents. Nat Neurosci 16, 824–831 (2013). https://doi.org/10.1038/nn.3410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing