Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Choice-related activity and correlated noise in subcortical vestibular neurons

Subjects

Abstract

Functional links between neuronal activity and perception are studied by examining trial-by-trial correlations (choice probabilities) between neural responses and perceptual decisions. We addressed fundamental issues regarding the nature and origin of choice probabilities by recording from subcortical (brainstem and cerebellar) neurons in rhesus monkeys during a vestibular heading discrimination task. Subcortical neurons showed robust choice probabilities that exceeded those seen in cortex (area MSTd) under identical conditions. The greater choice probabilities of subcortical neurons could be predicted by a stronger dependence of correlated noise on tuning similarity, as revealed by population decoding. Significant choice probabilities were observed almost exclusively for neurons that responded selectively to translation, whereas neurons that represented net gravito-inertial acceleration did not show choice probabilities. These findings suggest that the emergence of choice probabilities in the vestibular system depends on a critical signal transformation that occurs in subcortical pathways to distinguish translation from orientation relative to gravity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of neuronal sensitivity for an exemplar CBN neuron recorded during the heading discrimination task.
Figure 2: Summary of neural sensitivity, choice probability and tuning curves.
Figure 3: Time courses of response amplitude, neuronal thresholds and choice probabilities.
Figure 4: Measuring neural dissociation of tilt and translation.
Figure 5: Choice probabilities depend on the translation and net acceleration coding property of VTN and CBN cells.
Figure 6: Measuring noise correlation (rnoise) and signal correlation (rsignal) between pairs of single neurons.
Figure 7: Relationship between noise correlation (rnoise) and signal correlation (rsignal).
Figure 8: Predicted relationship between choice probabilities and neuronal thresholds, derived from decoding simulated population responses.

Similar content being viewed by others

References

  1. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, J. & Newsome, W.T. Correlation between speed perception and neural activity in the middle temporal visual area. J. Neurosci. 25, 711–722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Uka, T. & DeAngelis, G.C. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42, 297–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Krug, K. A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT. Phil. Trans. R. Soc. Lond. B 359, 929–941 (2004).

    Article  Google Scholar 

  7. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu, Y., Angelaki, D.E. & DeAngelis, G.C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11, 1201–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu, Y., DeAngelis, G.C. & Angelaki, D.E. A functional link between area MSTd and heading perception based on vestibular signals. Nat. Neurosci. 10, 1038–1047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nienborg, H. & Cumming, B.G. Macaque V2 neurons, but not V1 neurons, show choice-related activity. J. Neurosci. 26, 9567–9578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nienborg, H. & Cumming, B.G. Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons. Nat. Neurosci. 10, 1608–1614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uka, T., Tanabe, S., Watanabe, M. & Fujita, I. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25, 10796–10802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nienborg, H. & Cumming, B.G. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459, 89–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. de Lafuente, V. & Romo, R. Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl. Acad. Sci. USA 103, 14266–14271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nienborg, H. & Cumming, B. Correlations between the activity of sensory neurons and behavior: how much do they tell us about a neuron's causality? Curr. Opin. Neurobiol. 20, 376–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Angelaki, D.E. & Cullen, K.E. Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Krug, K. & Parker, A.J. Neurons in dorsal visual area V5/MT signal relative disparity. J. Neurosci. 31, 17892–17904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angelaki, D.E., Shaikh, A.G., Green, A.M. & Dickman, J.D. Neurons compute internal models of the physical laws of motion. Nature 430, 560–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Yakusheva, T.A. et al. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54, 973–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen, M.R. & Newsome, W.T. Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. J. Neurosci. 29, 6635–6648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonzalo-Ruiz, A. & Leichnetz, G.R. Afferents of the caudal fastigial nucleus in a New World monkey (Cebus apella). Exp. Brain Res. 80, 600–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Meng, H., May, P.J., Dickman, J.D. & Angelaki, D.E. Vestibular signals in primate thalamus: properties and origins. J. Neurosci. 27, 13590–13602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wylie, D.R., De Zeeuw, C.I., DiGiorgi, P.L. & Simpson, J.I. Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J. Comp. Neurol. 349, 448–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Newlands, S.D. & Perachio, A.A. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res. Bull. 60, 475–495 (2003).

    Article  PubMed  Google Scholar 

  28. Meng, H. & Angelaki, D.E. Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation. J. Neurophysiol. 103, 817–826 (2010).

    Article  PubMed  Google Scholar 

  29. Shaikh, A.G., Ghasia, F.F., Dickman, J.D. & Angelaki, D.E. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J. Neurophysiol. 93, 853–863 (2005).

    Article  PubMed  Google Scholar 

  30. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fetsch, C.R., Wang, S., Gu, Y., DeAngelis, G.C. & Angelaki, D.E. Spatial reference frames of visual, vestibular and multimodal heading signals in the dorsal subdivision of the medial superior temporal area. J. Neurosci. 27, 700–712 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, A., DeAngelis, G.C. & Angelaki, D.E. Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J. Neurosci. 31, 12036–12052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, A., DeAngelis, G.C. & Angelaki, D.E. A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area. J. Neurosci. 31, 3082–3094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu, Y. et al. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71, 750–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu, Y., Watkins, P.V., Angelaki, D.E. & DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26, 73–85 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen, M.R. & Maunsell, J.H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, M.R. & Newsome, W.T. Context-dependent changes in functional circuitry in visual area MT. Neuron 60, 162–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohn, A. & Smith, M.A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, X. & Lisberger, S.G. Noise correlations in cortical area MT and their potential impact on trial-by-trial variation in the direction and speed of smooth-pursuit eye movements. J. Neurophysiol. 101, 3012–3030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Graf, A.B., Kohn, A., Jazayeri, M. & Movshon, J.A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Sanger, T.D. Probability density estimation for the interpretation of neural population codes. J. Neurophysiol. 76, 2790–2793 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Prince, S.J., Pointon, A.D., Cumming, B.G. & Parker, A.J. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J. Neurosci. 20, 3387–3400 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uka, T. & DeAngelis, G.C. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26, 6791–6802 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gu, Y., Fetsch, C.R., Adeyemo, B., DeAngelis, G.C. & Angelaki, D.E. Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66, 596–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, S., Yakusheva, T., DeAngelis, G.C. & Angelaki, D.E. Direction discrimination thresholds of vestibular and cerebellar nuclei neurons. J. Neurosci. 30, 439–448 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Meng, H., Green, A.M., Dickman, J.D. & Angelaki, D.E. Pursuit-vestibular interactions in brain stem neurons during rotation and translation. J. Neurophysiol. 93, 3418–3433 (2005).

    Article  PubMed  Google Scholar 

  52. Green, A.M., Shaikh, A.G. & Angelaki, D.E. Sensory vestibular contributions to constructing internal models of self-motion. J. Neural Eng. 2, S164–S179 (2005).

    Article  PubMed  Google Scholar 

  53. Liu, S. & Angelaki, D.E. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J. Neurosci. 29, 8936–8945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Google Scholar 

  55. Vapnik, V. The Nature of Statistical Learning (Springer, 2000).

  56. Ron, K. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Joint Conf. Artif. Intell. 2, 1137–1143 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (EY12814 and DC04260). G.C.D. was supported by grant EY016178.

Author information

Authors and Affiliations

Authors

Contributions

S.L., G.C.D. and D.E.A. designed the study. S.L. and Y.G. collected the data. S.L. performed the analyses. All of the authors contributed to writing the paper.

Corresponding author

Correspondence to Dora E Angelaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Gu, Y., DeAngelis, G. et al. Choice-related activity and correlated noise in subcortical vestibular neurons. Nat Neurosci 16, 89–97 (2013). https://doi.org/10.1038/nn.3267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing