Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasticity in gray and white: neuroimaging changes in brain structure during learning

Abstract

Human brain imaging has identified structural changes in gray and white matter that occur with learning. However, ascribing imaging measures to underlying cellular and molecular events is challenging. Here we review human neuroimaging findings of structural plasticity and then discuss cellular and molecular level changes that could underlie observed imaging effects. Greater dialog between researchers in these different fields would help to facilitate cross-talk between cellular and systems level explanations of how learning sculpts brain structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral relevance of brain structural variation.
Figure 2: Longitudinal studies of structural changes in gray and white matter with learning.
Figure 3: Candidate cellular mechanisms.

Similar content being viewed by others

References

  1. He, Y., Chen, Z.J. & Evans, A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007).

    PubMed  Google Scholar 

  2. Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bermudez, P., Evans, A.C., Lerch, J.P. & Zatorre, R.J. Neuro-anatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex 19, 1583–1596 (2009).

    PubMed  Google Scholar 

  4. Maguire, E.A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 97, 4398–4403 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneider, P. et al. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 5, 688–694 (2002).

    CAS  PubMed  Google Scholar 

  6. Bengtsson, S.L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  7. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    CAS  PubMed  Google Scholar 

  8. Driemeyer, J., Boyke, J., Gaser, C., Buchel, C. & May, A. Changes in gray matter induced by learning–revisited. PLoS ONE 3, e2669 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Scholz, J., Klein, M.C., Behrens, T.E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Taubert, M. et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30, 11670–11677 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi, H. et al. Training of working memory impacts structural connectivity. J. Neurosci. 30, 3297–3303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson, P.M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).

    CAS  PubMed  Google Scholar 

  13. Chiang, M.C. et al. Genetics of brain fiber architecture and intellectual performance. J. Neurosci. 29, 2212–2224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Golestani, N., Molko, N., Dehaene, S., LeBihan, D. & Pallier, C. Brain structure predicts the learning of foreign speech sounds. Cereb. Cortex 17, 575–582 (2007).

    PubMed  Google Scholar 

  15. Wong, P.C. et al. Volume of left Heschl's gyrus and linguistic pitch learning. Cereb. Cortex 18, 828–836 (2008).

    PubMed  Google Scholar 

  16. Foster, N.E. & Zatorre, R.J. Cortical structure predicts success in performing musical transformation judgments. Neuroimage 53, 26–36 (2010).

    PubMed  Google Scholar 

  17. Laule, C. et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler. 12, 747–753 (2006).

    CAS  PubMed  Google Scholar 

  18. Beaulieu, C. The biological basis of diffusion anisotropy. in Diffusion MRI: From Quantitative Measurement to In-Vivo Neuroanatomy (eds. Johansen-Berg, H. & Behrens, T.E.J.) 105–126 (Elsevier, London, 2009).

  19. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G. & Weisskoff, R.M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    PubMed  Google Scholar 

  20. Lerch, J.P. et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54, 2086–2095 (2011).

    PubMed  Google Scholar 

  21. Barbier, E.L., Lamalle, L. & Decorps, M. Methodology of brain perfusion imaging. J. Magn. Reson. Imaging 13, 496–520 (2001).

    CAS  PubMed  Google Scholar 

  22. Tronel, S. et al. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc. Natl. Acad. Sci. USA 107, 7963–7968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng, W., Saxe, M.D., Gallina, I.S. & Gage, F.H. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci. 29, 13532–13542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aimone, J.B., Wiles, J. & Gage, F.H. Computational influence of adult neurogenesis on memory encoding. Neuron 61, 187–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gould, E., Reeves, A.J., Graziano, M.S. & Gross, C.G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    CAS  PubMed  Google Scholar 

  27. Iordanova, B. & Ahrens, E.T. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. Neuroimage 59, 1004–1012 (2011).

    PubMed  Google Scholar 

  28. Nieman, B.J. et al. In vivo MRI of neural cell migration dynamics in the mouse brain. Neuroimage 50, 456–464 (2010).

    PubMed  Google Scholar 

  29. Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 3, 65–71 (2002).

    CAS  PubMed  Google Scholar 

  30. Dong, W.K. & Greenough, W.T. Plasticity of nonneuronal brain tissue: roles in developmental disorders. Ment. Retard. Dev. Disabil. Res. Rev. 10, 85–90 (2004).

    PubMed  Google Scholar 

  31. Wang, X., Takano, T. & Nedergaard, M. Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods Mol. Biol. 489, 93–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tremblay, M.È., Lowery, R.L. & Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleim, J.A. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77, 63–77 (2002).

    PubMed  Google Scholar 

  35. Kolb, B., Cioe, J. & Comeau, W. Contrasting effects of motor and visual spatial learning tasks on dendritic arborization and spine density in rats. Neurobiol. Learn. Mem. 90, 295–300 (2008).

    PubMed  Google Scholar 

  36. Kleim, J.A. et al. Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav. Brain Res. 178, 244–249 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Draganski, B. et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhyu, I.J. et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167, 1239–1248 (2010).

    CAS  PubMed  Google Scholar 

  40. Pereira, A.C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Klintsova, A.Y., Dickson, E., Yoshida, R. & Greenough, W.T. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res. 1028, 92–104 (2004).

    CAS  PubMed  Google Scholar 

  42. Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–10102 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Egan, M.F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  PubMed  Google Scholar 

  44. Cheeran, B. et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. (Lond.) 586, 5717–5725 (2008).

    CAS  Google Scholar 

  45. Xiao, J. et al. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18, 186–202 (2010).

    CAS  PubMed  Google Scholar 

  46. Cohen, J.E. & Fields, R.D. Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biol. 4, 43–55 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Datwani, A. et al. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64, 463–470 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  49. Licht, T. et al. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl. Acad. Sci. USA 108, 5081–5086 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Concha, L., Livy, D.J., Beaulieu, C., Wheatley, B.M. & Gross, D.W. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J. Neurosci. 30, 996–1002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takahashi, M. et al. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc. Natl. Acad. Sci. USA 99, 16192–16196 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fields, R.D. Neuroscience. Change in the brain's white matter. Science 330, 768–769 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Psachoulia, K., Jamen, F., Young, K.M. & Richardson, W.D. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol. 5, 57–67 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Peters, A., Verderosa, A. & Sethares, C. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56, 1151–1161 (2008).

    PubMed  Google Scholar 

  56. Ruegg, D.G., Kakebeeke, T.H., Gabriel, J.P. & Bennefeld, M. Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin. Neurophysiol. 114, 86–93 (2003).

    PubMed  Google Scholar 

  57. Canu, M.H., Carnaud, M., Picquet, F. & Goutebroze, L. Activity-dependent regulation of myelin maintenance in the adult rat. Brain Res. 1252, 45–51 (2009).

    CAS  PubMed  Google Scholar 

  58. Markham, J.A., Herting, M.M., Luszpak, A.E., Juraska, J.M. & Greenough, W.T. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res. 1288, 9–17 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE 6, e20678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Adams, B., Lee, M., Fahnestock, M. & Racine, R.J. Long-term potentiation trains induce mossy fiber sprouting. Brain Res. 775, 193–197 (1997).

    CAS  PubMed  Google Scholar 

  61. Ramírez-Amaya, V., Escobar, M.L., Chao, V. & Bermudez-Rattoni, F. Synaptogenesis of mossy fibers induced by spatial water maze overtraining. Hippocampus 9, 631–636 (1999).

    PubMed  Google Scholar 

  62. Toscano-Silva, M. et al. Hippocampal mossy fiber sprouting induced by forced and voluntary physical exercise. Physiol. Behav. 101, 302–308 (2010).

    CAS  PubMed  Google Scholar 

  63. Yasuda, M. et al. Multiple forms of activity-dependent competition refine hippocampal circuits in vivo. Neuron 70, 1128–1142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Johansen-Berg, H. Structural plasticity: rewiring the brain. Curr. Biol. 17, R141–R144 (2007).

    CAS  PubMed  Google Scholar 

  65. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    CAS  PubMed  Google Scholar 

  67. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fields, R.D. & Ni, Y. Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal. 3, ra73 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Stevens, B. & Fields, R.D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    CAS  PubMed  Google Scholar 

  70. Stevens, B., Porta, S., Haak, L.L., Gallo, V. & Fields, R.D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–832 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Taveggia, C., Feltri, M.L. & Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276–287 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Nave, K.A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).

    CAS  PubMed  Google Scholar 

  74. Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science 330, 779–782 (2010).

    CAS  PubMed  Google Scholar 

  75. Back, S.A., Luo, N.L., Borenstein, N.S., Volpe, J.J. & Kinney, H.C. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J. Neuropathol. Exp. Neurol. 61, 197–211 (2002).

    PubMed  Google Scholar 

  76. Itoh, K., Stevens, B., Schachner, M. & Fields, R.D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372 (1995).

    CAS  PubMed  Google Scholar 

  77. Wake, H., Lee, P.R. & Fields, R.D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dutta, R. & Trapp, B.D. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68, S22–S31; discussion S43–S54 (2007).

    PubMed  Google Scholar 

  79. Petrinovic, M.M. et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development 137, 2539–2550 (2010).

    CAS  PubMed  Google Scholar 

  80. Lee, H. et al. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci. 28, 2753–2765 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang, X., Herron, T.J. & Woods, D.L. Regional variation, hemispheric asymmetries and gender differences in pericortical white matter. Neuroimage 56, 2011–2023 (2011).

    PubMed  Google Scholar 

  82. Laule, C. et al. Magnetic resonance imaging of myelin. Neurotherapeutics 4, 460–484 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann. Neurol. 69, 673–680 (2011).

    CAS  PubMed  Google Scholar 

  84. Duyn, J.H. et al. High-field MRI of brain cortical substructure based on signal phase. Proc. Natl. Acad. Sci. USA 104, 11796–11801 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Van Leemput, K. et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 19, 549–557 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Barazany, D., Basser, P.J. & Assaf, Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132, 1210–1220 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Avram, A.V., Guidon, A. & Song, A.W. Myelin water weighted diffusion tensor imaging. Neuroimage 53, 132–138 (2010).

    PubMed  Google Scholar 

  88. Johansen-Berg, H., Della-Maggiore, V., Behrens, T.E., Smith, S.M. & Paus, T. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage 36 (suppl. 2), T16–T21 (2007).

    PubMed  Google Scholar 

  89. Flöel, A., de Vries, M.H., Scholz, J., Breitenstein, C. & Johansen-Berg, H. White matter integrity in the vicinity of Broca's area predicts grammar learning success. Neuroimage 47, 1974–1981 (2009).

    PubMed  Google Scholar 

  90. Boyke, J., Driemeyer, J., Gaser, C., Buchel, C. & May, A. Training-induced brain structure changes in the elderly. J. Neurosci. 28, 7031–7035 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wright, I.C. et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 2, 244–252 (1995).

    CAS  PubMed  Google Scholar 

  92. Johansen-Berg, H. & Behrens, T.E.J. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy (Elsevier, London, 2009).

  93. Horsfield, M.A. Magnetization transfer imaging in multiple sclerosis. J. Neuroimaging 15, 58S–67S (2005).

    PubMed  Google Scholar 

  94. Ashburner, J. et al. Identifying global anatomical differences: deformation-based morphometry. Hum. Brain Mapp. 6, 348–357 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lohmann, G., von Cramon, D.Y. & Steinmetz, H. Sulcal variability of twins. Cereb. Cortex 9, 754–763 (1999).

    CAS  PubMed  Google Scholar 

  96. Thomas, A.G. et al. Functional but not structural changes associated with learning: an exploration of longitudinal voxel-based morphometry (VBM). Neuroimage 48, 117–125 (2009).

    PubMed  Google Scholar 

  97. Johansen-Berg, H. Behavioural relevance of variation in white matter microstructure. Curr. Opin. Neurol. 23, 351–358 (2010).

    PubMed  Google Scholar 

  98. Maguire, E.A. et al. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13, 250–259 (2003).

    PubMed  Google Scholar 

  99. Bohbot, V.D., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A.P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci. 27, 10078–10083 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hyde, K.L. et al. Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.J.Z. is supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada; R.D.F. is supported by funds for intramural research at the US National Institutes of Health; H.J.-B. is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Johansen-Berg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatorre, R., Fields, R. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15, 528–536 (2012). https://doi.org/10.1038/nn.3045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing