Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression

Abstract

MicroRNA-124a (miR-124a) is the most abundant microRNA expressed in the vertebrate CNS. Despite past investigations into the role of miR-124a, inconsistent results have left the in vivo function of miR-124a unclear. We examined the in vivo function of miR-124a by targeted disruption of Rncr3 (retinal non-coding RNA 3), the dominant source of miR-124a. Rncr3−/− mice exhibited abnormalities in the CNS, including small brain size, axonal mis-sprouting of dentate gyrus granule cells and retinal cone cell death. We found that Lhx2 is an in vivo target mRNA of miR-124a. We also observed that LHX2 downregulation by miR-124a is required for the prevention of apoptosis in the developing retina and proper axonal development of hippocampal neurons. These results suggest that miR-124a is essential for the maturation and survival of dentate gyrus neurons and retinal cones, as it represses Lhx2 translation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Rncr3 and miR-124a.
Figure 2: Loss of miR-124a in the retinal presumptive photoreceptor layer and hippocampal dentate gyrus.
Figure 3: Reduction of cone photoreceptor cells in the Rncr3−/− retina.
Figure 4: Rncr3−/− mice exhibit neuronal dysfunction and aberrant growth of dentate granule cell axon.
Figure 5: Target analysis of miR-124a.
Figure 6: In vivo rescue experiments of Rncr3−/− mice by miR-124a expression in the retina.
Figure 7: In vivo rescue experiments of Rncr3−/− mice by miR-124a expression in the brain.
Figure 8: Rescue of Rncr3−/− mice by pre-miR-124a-2 expression.

Similar content being viewed by others

References

  1. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Tabarés-Seisdedos, R. & Rubenstein, J.L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol. Psychiatry 14, 563–589 (2009).

    Article  PubMed  Google Scholar 

  3. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Visvanathan, J., Lee, S., Lee, B., Lee, J.W. & Lee, S.K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, L.C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao, X., Pfaff, S.L. & Gage, F.H. A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Georgi, S.A. & Reh, T.A. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci. 30, 4048–4061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koike, C. et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc. Natl. Acad. Sci. USA 107, 332–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Blackshaw, S. et al. Genomic analysis of mouse retinal development. PLoS Biol. 2, e247 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. He, S. et al. MicroRNA-encoding long non-coding RNAs. BMC Genomics 9, 236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hackler, L., Wan, J., Swaroop, A., Qian, J. & Zack, D.J. MicroRNA profile of the developing mouse retina. Invest. Ophthalmol. Vis. Sci. 51, 1823–1831 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohsawa, R. & Kageyama, R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 1192, 90–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, L. et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27, 94–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Nishida, A. et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6, 1255–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Silber, J. et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6, 14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Côté, F., Collard, J.F. & Julien, J.P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46 (1993).

    Article  PubMed  Google Scholar 

  22. Okazaki, M.M., Evenson, D.A. & Nadler, J.V. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J. Comp. Neurol. 352, 515–534 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Chow, R.L. & Lang, R.A. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Mangale, V.S. et al. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 319, 304–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furukawa, A., Koike, C., Lippincott, P., Cepko, C.L. & Furukawa, T. The mouse Crx 5′-upstream transgene sequence directs cell-specific and developmentally regulated expression in retinal photoreceptor cells. J. Neurosci. 22, 1640–1647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoesche, C., Sauerwald, A., Veh, R.W., Krippl, B. & Kilimann, M.W. The 5′-flanking region of the rat synapsin I gene directs neuron-specific and developmentally regulated reporter gene expression in transgenic mice. J. Biol. Chem. 268, 26494–26502 (1993).

    CAS  PubMed  Google Scholar 

  27. Qiu, R. et al. The role of miR-124a in early development of the Xenopus eye. Mech. Dev. 126, 804–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Conaco, C., Otto, S., Han, J.J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl. Acad. Sci. USA 103, 2422–2427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Damiani, D. et al. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J. Neurosci. 28, 4878–4887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajasethupathy, P. et al. Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63, 803–817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, A.S., Staahl, B.T., Chen, L. & Crabtree, G.R. MicroRNA-mediated switching of chromatin-remodeling complexes in neural development. Nature 460, 642–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, K. et al. MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res. 39, 2869–2879 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Porter, F.D. et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain and definitive erythrocyte development. Development 124, 2935–2944 (1997).

    CAS  PubMed  Google Scholar 

  38. Wilson, S.I., Shafer, B., Lee, K.J. & Dodd, J. A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors. Neuron 59, 413–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Holmes, G.L., Sarkisian, M., Ben-Ari, Y. & Chevassus-Au-Louis, N. Mossy fiber sprouting after recurrent seizures during early development in rats. J. Comp. Neurol. 404, 537–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Baulac, S. et al. A novel locus for generalized epilepsy with febrile seizures plus in French families. Arch. Neurol. 65, 943–951 (2008).

    Article  PubMed  Google Scholar 

  41. Glancy, M. et al. Transmitted duplication of 8p23.1–8p23.2 associated with speech delay, autism and learning difficulties. Eur. J. Hum. Genet. 17, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Koyama, R. & Ikegaya, Y. Mossy fiber sprouting as a potential therapeutic target for epilepsy. Curr. Neurovasc. Res. 1, 3–10 (2004).

    Article  PubMed  Google Scholar 

  43. Weiler, I.J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, X.L., Li, Y., Wang, F. & Gao, F.B. The steady-state level of the nervous system–specific microRNA-124a is regulated by dFMR1 in Drosophila. J. Neurosci. 28, 11883–11889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siegel, G. et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat. Cell Biol. 11, 705–716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanuki, R., Omori, Y., Koike, C., Sato, S. & Furukawa, T. Panky, a novel photoreceptor-specific ankyrin repeat protein, is a transcriptional cofactor that suppresses CRX-regulated photoreceptor genes. FEBS Lett. 584, 753–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Gray, P.A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Babb, T.L., Kupfer, W.R., Pretorius, J.K., Crandall, P.H. & Levesque, M.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42, 351–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Onishi, A. et al. Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61, 234–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Maniatis for RIPmiR-124a-2, M. Kilimann for Synapsin 1 promoter, Y. Omori, K. Terada, M. Ueno, N. Nagata, K. Aritake, Y. Oishi, T. Hamasaki, and H. Abe for critical comments and technical advice, and A. Tani, M. Kadowaki, Y. Kawakami, A. Ishimaru, H. Tsujii, T. Saioka, K. Sone, H. Abe, and S. Kennedy for technical assistance. This work was supported by Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Grant-in-Aid for Scientific Research (B), Grant-in-Aid for Young Scientists (B), a Grant for Molecular Brain Science from the Ministry of Education, Culture, Sports, Science and Technology, the Takeda Science Foundation, the Uehara Memorial Foundation, the Mochida Memorial Foundation, and the Naito Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and T.F. designed the project. R.S., C.K., S.W., S.I. and T.F carried out the molecular and in situ hybridization experiments. R.S. and A.O. performed in vivo electroporation, virus infection and knockdown experiments in retinal and hippocampal neurons, and immunohistochemistry. S.U., T.K., M.K. and R.S. carried out the ERG experiments. R.S., Y.M. and T.F. produced the knockout and transgenic mice. R.S., R. Muramatsu and T.Y. carried out hippocampal tissue experiments. R.S., R. Matsui and D.W. produced lentivirus. R.S., Y.C. and Y.U. produced adeno-associated virus. R.S. and T.F. wrote the manuscript. T.F. supervised the project.

Corresponding author

Correspondence to Takahisa Furukawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2, and Supplementary Statistical Analysis (PDF 2567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanuki, R., Onishi, A., Koike, C. et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14, 1125–1134 (2011). https://doi.org/10.1038/nn.2897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing