Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing of neurogenesis is a determinant of olfactory circuitry

Abstract

An odorant receptor map in mammals that is constructed by the glomerular coalescence of sensory neuron axons in the olfactory bulb is essential for proper odor information processing. How this map is linked with olfactory cortex is unknown. Using a battery of methods, including various markers of cell division in combination with tracers of neuronal connections and time-lapse live imaging, we found that early- and late-generated mouse mitral cells became differentially distributed in the dorsal and ventral subdivisions of the odorant receptor map. In addition, the late-generated mitral cells extended substantially stronger projections to the olfactory tubercle than did the early-generated cells. Together, these data indicate that the odorant receptor map is developmentally linked to the olfactory cortices in part by the birthdate of mitral cells. Thus, different olfactory cortical regions become involved in processing information from distinct regions of the odorant receptor map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of mitral cells with different birthdates in the olfactory bulb.
Figure 2: Preferential integration of late-generated mitral cells into the ventrolateral developing olfactory bulb.
Figure 3: Tangential migration of late-generated mitral cells in the developing olfactory bulb.
Figure 4: Direct contact of E12-generated mitral cells with pre-existing mitral cell axons.
Figure 5: Birthdate-regulated axonal projection to the olfactory tubercle.

Similar content being viewed by others

References

  1. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  Google Scholar 

  2. Ressler, K.J., Sullivan, S.L. & Buck, L.B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    Article  CAS  Google Scholar 

  3. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  Google Scholar 

  4. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    Article  CAS  Google Scholar 

  5. Imai, T. & Sakano, H. Odorant receptor–mediated signaling in the mouse. Curr. Opin. Neurobiol. 18, 251–260 (2008).

    Article  CAS  Google Scholar 

  6. Kaneko-Goto, T., Yoshihara, S., Miyazaki, H. & Yoshihara, Y. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57, 834–846 (2008).

    Article  CAS  Google Scholar 

  7. Serizawa, S. et al. A neuronal identity code for the odorant receptor–specific and activity-dependent axon sorting. Cell 127, 1057–1069 (2006).

    Article  CAS  Google Scholar 

  8. Imai, T. et al. Pre-target axon sorting establishes the neural map topography. Science 325, 585–590 (2009).

    Article  CAS  Google Scholar 

  9. Imai, T., Suzuki, M. & Sakano, H. Odorant receptor–derived cAMP signals direct axonal targeting. Science 314, 657–661 (2006).

    Article  CAS  Google Scholar 

  10. Kobayakawa, K. et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature 450, 503–508 (2007).

    Article  CAS  Google Scholar 

  11. Bozza, T. et al. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61, 220–233 (2009).

    Article  CAS  Google Scholar 

  12. Mori, K., Takahashi, Y.K., Igarashi, K.M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    Article  CAS  Google Scholar 

  13. Johnson, B.A. & Leon, M. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503, 1–34 (2007).

    Article  CAS  Google Scholar 

  14. Matsumoto, H. et al. Spatial arrangement of glomerular molecular-feature clusters in the odorant-receptor class domains of the mouse olfactory bulb. J. Neurophysiol. 103, 3490–3500 (2010).

    Article  CAS  Google Scholar 

  15. Soucy, E.R., Albeanu, D.F., Fantana, A.L., Murthy, V.N. & Meister, M. Precision and diversity in an odor map on the olfactory bulb. Nat. Neurosci. 12, 210–220 (2009).

    Article  CAS  Google Scholar 

  16. Johnson, B.A., Xu, Z., Ali, S.S. & Leon, M. Spatial representations of odorants in olfactory bulbs of rats and mice: similarities and differences in chemotopic organization. J. Comp. Neurol. 514, 658–673 (2009).

    Article  CAS  Google Scholar 

  17. Poo, C. & Isaacson, J.S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article  CAS  Google Scholar 

  18. Stettler, D.D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article  CAS  Google Scholar 

  19. Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009–1023 (2008).

    Article  CAS  Google Scholar 

  20. Miyasaka, N. et al. From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J. Neurosci. 29, 4756–4767 (2009).

    Article  CAS  Google Scholar 

  21. Scott, J.W., McBride, R.L. & Schneider, S.P. The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J. Comp. Neurol. 194, 519–534 (1980).

    Article  CAS  Google Scholar 

  22. Haberly, L.B. & Price, J.L. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129, 152–157 (1977).

    Article  CAS  Google Scholar 

  23. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  24. Rakic, P., Ayoub, A.E., Breunig, J.J. & Dominguez, M.H. Decision by division: making cortical maps. Trends Neurosci. 32, 291–301 (2009).

    Article  CAS  Google Scholar 

  25. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  26. Hinds, J.W. Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol. 134, 287–304 (1968).

    Article  CAS  Google Scholar 

  27. Batista-Brito, R., Close, J., Machold, R. & Fishell, G. The distinct temporal origins of olfactory bulb interneuron subtypes. J. Neurosci. 28, 3966–3975 (2008).

    Article  CAS  Google Scholar 

  28. Imamura, F. et al. A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J. Comp. Neurol. 495, 754–768 (2006).

    Article  CAS  Google Scholar 

  29. Mori, K., von Campenhause, H. & Yoshihara, Y. Zonal organization of the mammalian main and accessory olfactory systems. Phil. Trans. R. Soc. Lond. B 355, 1801–1812 (2000).

    Article  CAS  Google Scholar 

  30. Blanchart, A., De Carlos, J.A. & Lopez-Mascaraque, L. Time frame of mitral cell development in the mice olfactory bulb. J. Comp. Neurol. 496, 529–543 (2006).

    Article  Google Scholar 

  31. Puche, A.C. & Shipley, M.T. Radial glia development in the mouse olfactory bulb. J. Comp. Neurol. 434, 1–12 (2001).

    Article  CAS  Google Scholar 

  32. Inaki, K., Nishimura, S., Nakashiba, T., Itohara, S. & Yoshihara, Y. Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition molecules. J. Comp. Neurol. 479, 243–256 (2004).

    Article  Google Scholar 

  33. Treloar, H.B., Gabeau, D., Yoshihara, Y., Mori, K. & Greer, C.A. Inverse expression of olfactory cell adhesion molecule in a subset of olfactory axons and a subset of mitral/tufted cells in the developing rat main olfactory bulb. J. Comp. Neurol. 458, 389–403 (2003).

    Article  CAS  Google Scholar 

  34. Hinds, J.W. Early neuron differentiation in the mouse olfactory bulb. II. Electron microscopy. J. Comp. Neurol. 146, 253–276 (1972).

    Article  CAS  Google Scholar 

  35. Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  Google Scholar 

  36. Grafe, M.R. & Leonard, C.M. Developmental changes in the topographical distribution of cells contributing to the lateral olfactory tract. Brain Res. 255, 387–400 (1982).

    Article  CAS  Google Scholar 

  37. Salic, A. & Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415–2420 (2008).

    Article  CAS  Google Scholar 

  38. Willhite, D.C. et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc. Natl. Acad. Sci. USA 103, 12592–12597 (2006).

    Article  CAS  Google Scholar 

  39. Bailey, M.S., Puche, A.C. & Shipley, M.T. Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular formation. J. Comp. Neurol. 415, 423–448 (1999).

    Article  CAS  Google Scholar 

  40. Blanchart, A., Romaguera, M., Garcia-Verdugo, J.M., de Carlos, J.A. & Lopez-Mascaraque, L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. Eur. J. Neurosci. 27, 2838–2846 (2008).

    Article  Google Scholar 

  41. Takeuchi, H. et al. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 141, 1056–1067 (2010).

    Article  CAS  Google Scholar 

  42. Ojima, H., Mori, K. & Kishi, K. The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection. J. Comp. Neurol. 230, 77–87 (1984).

    Article  CAS  Google Scholar 

  43. Scott, J.W. Electrophysiological identification of mitral and tufted cells and distributions of their axons in olfactory system of the rat. J. Neurophysiol. 46, 918–931 (1981).

    Article  CAS  Google Scholar 

  44. Nagayama, S. et al. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front. Neural Circuits 4, 120 (2010).

    Article  Google Scholar 

  45. Hirata, T. & Fujisawa, H. Environmental control of collateral branching and target invasion of mitral cell axons during development. J. Neurobiol. 38, 93–104 (1999).

    Article  CAS  Google Scholar 

  46. Fouquet, C. et al. Robo1 and robo2 control the development of the lateral olfactory tract. J. Neurosci. 27, 3037–3045 (2007).

    Article  CAS  Google Scholar 

  47. Soussi-Yanicostas, N. et al. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109, 217–228 (2002).

    Article  CAS  Google Scholar 

  48. Yamaguchi, M. & Mori, K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102, 9697–9702 (2005).

    Article  CAS  Google Scholar 

  49. Burns, K.A. et al. Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb. Cortex 17, 2585–2592 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Mori for the antibody to OCAM, Y. Yoshihara for the antibody to Tbx21, A. Bordey for the DCX-GFP mice and all of the members of the Greer, Rakic and Treloar laboratories for technical assistance and discussion. The antibody to RC2 developed by M. Yamamoto was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the US National Institute of Child Health and Human Development and maintained by the Department of Biology, University of Iowa. This work was supported by the US National Institute of Health and the Kavli Institute for Neuroscience at Yale.

Author information

Authors and Affiliations

Authors

Contributions

F.I. and C.A.G. designed the study, analyzed data and wrote the manuscript. F.I. conducted the experiments. Time-lapse live imaging was done by F.I. and A.E.A. F.I., C.A.G., A.E.A. and P.R. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Charles A Greer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3319 kb)

Supplementary Video 1

Tangential migration of cells in the developing olfactory bulb. Time-lapse images were taken from an E14 DCX-GFP olfactory bulb. An arrow indicates the tangentially migrating cell moving toward the posterior portion (down side of the image) of the olfactory bulb. Images were captured every 10 minutes. (MOV 1145 kb)

Supplementary Video 2

Radial migration of cells in the developing olfactory bulb. Time-lapse images were taken from an E14 DCX-GFP olfactory bulb. An arrow indicates the radially migrating cell in the ventricular zone moving toward the olfactory bulb surface. Images were captured every 10 minutes. (MOV 870 kb)

Supplementary Video 3

Radial to tangential change of migrating orientation of cells in developing olfactory bulb. Time-lapse images were taken from an E15 DCX-GFP olfactory bulb. An arrow shows the cell that changes orientation from radial to tangential at the interface of ventricular zone and intermediate zone. Images were captured every 10 minutes. (MOV 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamura, F., Ayoub, A., Rakic, P. et al. Timing of neurogenesis is a determinant of olfactory circuitry. Nat Neurosci 14, 331–337 (2011). https://doi.org/10.1038/nn.2754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing