Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinoid X receptor gamma signaling accelerates CNS remyelination

Abstract

The molecular basis of CNS myelin regeneration (remyelination) is poorly understood. We generated a comprehensive transcriptional profile of the separate stages of spontaneous remyelination that follow focal demyelination in the rat CNS and found that transcripts that encode the retinoid acid receptor RXR-γ were differentially expressed during remyelination. Cells of the oligodendrocyte lineage expressed RXR-γ in rat tissues that were undergoing remyelination and in active and remyelinated multiple sclerosis lesions. Knockdown of RXR-γ by RNA interference or RXR-specific antagonists severely inhibited oligodendrocyte differentiation in culture. In mice that lacked RXR-γ, adult oligodendrocyte precursor cells efficiently repopulated lesions after demyelination, but showed delayed differentiation into mature oligodendrocytes. Administration of the RXR agonist 9-cis-retinoic acid to demyelinated cerebellar slice cultures and to aged rats after demyelination caused an increase in remyelinated axons. Our results indicate that RXR-γ is a positive regulator of endogenous oligodendrocyte precursor cell differentiation and remyelination and might be a pharmacological target for regenerative therapy in the CNS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential expression of Rxrg in CNS remyelination transcriptome.
Figure 2: RXR-γ expression by oligodendrocyte lineage cells.
Figure 3: Expression of RXR-γ in multiple sclerosis lesions.
Figure 4: Loss of RXR-γ function impairs oligodendrocyte differentiation.
Figure 5: Rexinoids influence oligodendrocyte differentiation and myelination.
Figure 6: CNS remyelination is enhanced by 9 cis-retinoic acid.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Prineas, J.W. & Connell, F. Remyelination in multiple sclerosis. Ann. Neurol. 5, 22–31 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Raine, C.S. & Wu, E. Multiple sclerosis: remyelination in acute lesions. J. Neuropathol. Exp. Neurol. 52, 199–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Goldschmidt, T., Antel, J., König, F.B., Brück, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Franklin, R.J.M. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, A., Tourtellotte, W.W., Rudick, R. & Trapp, B.D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    Article  PubMed  Google Scholar 

  7. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nave, K.A. & Trapp, B.D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Fancy, S.P.J. et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 23, 1571–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller, R.H. & Mi, S. Dissecting demyelination. Nat Neurosci. 10, 1351–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Woodruff, R.H. & Franklin, R.J.M. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25, 216–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Germain, P. et al. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58, 760–772 (2006).

    Article  PubMed  Google Scholar 

  14. Lefebvre, P., Benomar, Y. & Staels, B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol. Metab. 21, 676–683 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Franklin, R.J.M. & ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Schrage, K., Koopmans, G., Joosten, E.A.J. & Mey, J. Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury. Eur. J. Neurosci. 23, 285–295 (2006).

    Article  PubMed  Google Scholar 

  17. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krezel, W. et al. RXR gamma null mice are apparently normal and compound RXR alpha+/−/RXR beta−/−/RXR gamma−/− mutant mice are viable. Proc. Natl. Acad. Sci. USA 93, 9010–9014 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haugen, B.R. et al. Retinoid X receptor gamma-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology 145, 3679–3685 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, N.S. et al. Thyroid hormone resistance and increased metabolic rate in the RXR-gamma–deficient mouse. J. Clin. Invest. 106, 73–79 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krzyżosiak, A. et al. Retinoid X receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 66, 908–920 (2010).

    Article  PubMed  Google Scholar 

  22. Takahashi, B. et al. Novel retinoid X receptor antagonists: specific inhibition of retinoid synergism in RXR-RAR heterodimer actions. J. Med. Chem. 45, 3327–3330 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Heyman, R.A. et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68, 397–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Pombo, P.M., Barettino, D., Ibarrola, N., Vega, S. & Rodríguez-Peña, A. Stimulation of the myelin basic protein gene expression by 9-cis-retinoic acid and thyroid hormone: activation in the context of its native promoter. Brain Res. Mol. Brain Res. 64, 92–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Kagechika, H. & Shudo, K. Synthetic retinoids: recent developments concerning structure and clinical utility. J. Med. Chem. 48, 5875–5883 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Nishimaki-Mogami, T. et al. The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem. Pharmacol. 76, 1006–1013 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Birgbauer, E., Rao, T.S. & Webb, M. Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J. Neurosci. Res. 78, 157–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Klemann, C. et al. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am. J. Pathol. 174, 2234–2245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sim, F.J., Zhao, C., Penderis, J. & Franklin, R.J.M. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 22, 2451–2459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moreno, S., Farioli-Vecchioli, S. & Cerù, M.P. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123, 131–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Sim, F.J. et al. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation. Ann. Neurol. 59, 763–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Altucci, L., Leibowitz, M.D., Ogilvie, K.M., de Lera, A.R. & Gronemeyer, H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6, 793–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Trousson, A. et al. 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J. Neurochem. 109, 945–958 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Granneman, J., Skoff, R. & Yang, X. Member of the peroxisome proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes. J. Neurosci. Res. 51, 563–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Almad, A. & McTigue, D.M. Chronic expression of PPAR-delta by oligodendrocyte lineage cells in the injured rat spinal cord. J. Comp. Neurol. 518, 785–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diab, A. et al. Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 116–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Georgiades, P. & Brickell, P.M. Differential expression of the rat retinoid X receptor gamma gene during skeletal muscle differentiation suggests a role in myogenesis. Dev. Dyn. 210, 227–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. Laursen, L.S., Chan, C.W. & ffrench-Constant, C. An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J. Neurosci. 29, 9174–9185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Seilhean (Service d'Anatomopathologie Neurologique, G-H Pitié-Salpêtrière, Paris) for classification of multiple sclerosis lesions, the French Brain Bank GIE NeuroCEB (Hôpital Pitié-Salpêtrière, Paris, France) and the United Kingdom Multiple Sclerosis Society Brain Bank (R. Reynolds, Imperial College, London) for multiple sclerosis tissue. All tissues were collected with the approval of the French and London Multicentre Research Ethics committees. Animal procedures were performed under a UK Home Office Project License. This work was supported by grants from the United Kingdom Multiple Sclerosis Society (R.J.M.F., C.ff.-C.), the Wellcome Trust (C.ff.-C.), the French Multiple Sclerosis foundation ARSEP (B.N.O.), the Biotechnology and Biological Sciences Research Council of the United Kingdom (C.ff.-C., J.B.), National Multiple Sclerosis Society (C.ff.-C., R.J.M.F., A.B.-V.E., B.N.O.), AP-HP Hôpital Pitié-Salpêtrière, Service d'Anatomopathologie Neurologique (B.N.O.) et des Maladies du Système Nerveux (A.B.-V.E.). A.W. holds a Wellcome Trust Intermediate Fellowship. A.A.J. holds a Fellowship from Multiple Sclerosis Society of Canada.

Author information

Authors and Affiliations

Authors

Contributions

J.K.H. performed in vivo experiments and laser capture microdissections. A.A.J. performed in vitro experiments. C.Z. contributed to in vivo experiments. A.W. performed ex vivo experiments. B.N.O., C.K. and A.B.-V.E. performed multiple sclerosis tissue analysis. H.K. generated RXR antagonists and agonists. W.K. and P.C. generated the RXR-γ mouse mutants. J.B. and J.K.H. performed bioinformatics. C.ff.-C. and R.J.M.F. equally oversaw the project.

Corresponding authors

Correspondence to Charles ffrench-Constant or Robin J M Franklin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 5, 7 (PDF 1078 kb)

Supplementary Table 1

Total genes differentially expressed between 5, 14 and 28 days post CCP demyelination. (XLS 5299 kb)

Supplementary Table 2

Gene list used for IPA analysis. (XLS 96 kb)

Supplementary Table 3

Active signaling networks found between 5 and 14 dpl. (XLS 66 kb)

Supplementary Table 4

Total genes differentially expressed between 5 and 14 dpl (P < 0.05) used for volcano plot. (XLS 714 kb)

Supplementary Table 6

IPA identified RXR associated pathways from the remyelination transcriptome. (XLS 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Jarjour, A., Nait Oumesmar, B. et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14, 45–53 (2011). https://doi.org/10.1038/nn.2702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing