Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP

Abstract

Mesencephalic-diencephalic dopaminergic neurons control locomotor activity and emotion and are affected in neurodegenerative and psychiatric diseases. The homeoprotein Otx2 is restricted to ventral tegmental area (VTA) neurons that are prevalently complementary to those expressing Girk2 and glycosylated active form of the dopamine transporter (Dat). High levels of glycosylated Dat mark neurons with efficient dopamine uptake and pronounced vulnerability to Parkinsonian degeneration. We found that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of dorsal-lateral VTA, such as Girk2 and Dat expression. Otx2 limited the number of VTA neurons with efficient dopamine uptake and conferred resistance to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin. Ectopic Otx2 expression also provided neurons of the substantia nigra with efficient neuroprotection to MPTP. These findings indicate that Otx2 is required to specify neuron subtype identity in VTA and may antagonize vulnerability to the Parkinsonian toxin MPTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Otx2 postmitotic inactivation and overexpression.
Figure 2: Otx2 inactivation does not affect the survival of Otx2-positive VTA neurons but induces an increase in the number of GFP and Girk2 double-positive neurons.
Figure 3: Otx2 activation in the VTA generates a reduction in the number of Girk2-positive neurons.
Figure 4: The level and expression profile of glyco-Dat are altered in Otx2 mutants.
Figure 5: Otx2 negatively controls Dat mRNA expression.
Figure 6: Otx2 is a neuroprotective factor for the Otx2-positive VTA neurons and this property may be conferred to SNpc neurons.

Similar content being viewed by others

References

  1. Björklund, A. & Lindvall, O. Dopamine-containing systems in the CNS. in Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS (eds. Biörklund, A. and Hökfelt, T.) 55–121 (Elsevier, Amsterdam, 1984).

  2. Björklund, L.M. & Isacson, O. Regulation of dopamine cell type and transmitter function in fetal and stem cell transplantation for Parkinson's disease. Prog. Brain Res. 138, 411–420 (2002).

    Article  PubMed  Google Scholar 

  3. Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, 1–55 (1964).

    Google Scholar 

  4. Smidt, M.P. & Burbach, J.P. How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci. 8, 21–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Marín, F., Herrero, M.T., Vyas, S. & Puelles, L. Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric pattern and novel positive regions. Dev. Dyn. 234, 709–717 (2005).

    Article  PubMed  Google Scholar 

  6. Omodei, D. et al. Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development 135, 3459–3470 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, L., Barraud, P., Andersson, E., Kirik, D. & Björklund, A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression and efferent projections. J. Neurosci. 25, 6467–6477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jellinger, K.A. The pathology of Parkinson′s disease. Adv. Neurol. 86, 55–72 (2001).

    CAS  PubMed  Google Scholar 

  9. Prakash, N. & Wurst, W. Development of dopaminergic neurons in the mammalian brain. Cell. Mol. Life Sci. 63, 187–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Simeone, A. Genetic control of dopaminergic neuron differentiation. Trends Neurosci. 28, 62–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jankovic, J., Chen, S. & Le, W.D. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog. Neurobiol. 77, 128–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Smidt, M.P. et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat. Neurosci. 3, 337–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Smidt, M.P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 1145–1155 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ferri, A.L. et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134, 2761–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Andersson, E., Jensen, J.B., Parmar, M., Guillemot, F. & Björklund, A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133, 507–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 3213–3225 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. van den Munckhof, P. et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130, 2535–2542 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nunes, I., Tovmasian, L.T., Silva, R.M., Burke, R.E. & Goff, S.P. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl. Acad. Sci. USA 100, 4245–4250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, H.H., Saueressig, H., Wurst, W., Goulding, M.D. & O'Leary, D.D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci. 21, 3126–3134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sonnier, L. et al. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J. Neurosci. 27, 1063–1071 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sgadò, P. et al. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc. Natl. Acad. Sci. USA 103, 15242–15247 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zetterström, R.H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  PubMed  Google Scholar 

  26. Castelo-Branco, G. et al. Differential regulation of dopaminergic neuron development by Wnt-1, Wnt-3a and Wnt-5a. Proc. Natl. Acad. Sci. USA 100, 12747–12752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puelles, E. et al. Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat. Neurosci. 6, 453–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Puelles, E. et al. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131, 2037–2048 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133, 89–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Afonso-Oramas, D. et al. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiol. Dis. 36, 494–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson-Lewis, V., Jakowec, M., Burke, R.E. & Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Blum, D. et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol. 65, 135–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Chung, C.Y. et al. Cell type–specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709–1725 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Greene, J.G., Dingledine, R. & Greenamyre, J.T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol. Dis. 18, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Murer, G. et al. An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience 80, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Schein, J.C., Hunter, D.D. & Roffler-Tarlov, S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev. Biol. 204, 432–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Di Salvio, M., Di Giovannantonio, L.G., Omodei, D., Acampora, D. & Simeone, A. Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int. J. Dev. Biol. 54, 939–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Liang, C.L., Sinton, C.M., Sonsalla, P.K. & German, D.C. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5, 313–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Roffler-Tarlov, S., Martin, B., Graybiel, A.M. & Kauer, J.S. Cell death in the midbrain of the murine mutation weaver. J. Neurosci. 16, 1819–1826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bäckman, C.M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).

    Article  PubMed  Google Scholar 

  42. Acampora, D., Di Giovannantonio, L.G., Di Salvio, M., Mancuso, P. & Simeone, A. Selective inactivation of Otx2 mRNA isoforms reveals isoform-specific requirement for visceral endoderm anteriorization and head morphogenesis and highlights cell diversity in the visceral endoderm. Mech. Dev. 126, 882–897 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kittappa, R., Chang, W.W., Awatramani, R.B. & McKay, R.D. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol. 5, e325 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, L.B. et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. 279, 21012–21020 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Torres, G.E. et al. Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J. Biol. Chem. 278, 2731–2739 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Bezard, E. et al. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol. 155, 268–273 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Pifl, C., Giros, B. & Caron, M.G. Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J. Neurosci. 13, 4246–4253 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Agoston, Z. & Schulte, D. Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development 136, 3311–3322 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Kadkhodaei, B. et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Grieco and T. Russo for helpful discussions and criticisms on the manuscript, S. Casola for the R26 targeting vector, G. Corte for the Otx2 antibody and the staff of the CEINGE animal house for excellent animal care. We are grateful to E. Bricola for typing the manuscript. This work was supported by the FP7 for the project mdDA NEURODEV (222999) to A.S. and W.W., the FP6 project for the EUTRACC Integrated Project (LSHG-CT-2007-037445) to A.S. and W.W., the 'Stem Cell Project' of Fondazione Roma and the Italian Association for Cancer Research to A.S., and the Federal Ministry of Education and Research in the framework of the National Genome Research Network (NGFN+ Functional Genomics of Parkinson Disease FKZ 01GS08174) to W.W.

Author information

Authors and Affiliations

Authors

Contributions

M.D.S. and L.G.D.G. performed the experiments, D.A. generated the Otx2 mutant mice, R.P. performed the statistical analysis, D.O. and N.P. contributed to the phenotypic analysis, W.W. contributed to the interpretation of results and the writing of the manuscript, and A.S. designed and interpreted the experiments and wrote the manuscript.

Corresponding author

Correspondence to Antonio Simeone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Salvio, M., Di Giovannantonio, L., Acampora, D. et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci 13, 1481–1488 (2010). https://doi.org/10.1038/nn.2661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing