Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress-induced priming of glutamate synapses unmasks associative short-term plasticity

Abstract

Exposure to a stressor sensitizes or 'primes' the hypothalamic-pituitary-adrenal axis to a subsequent novel stressor. The synaptic mechanisms underlying this priming, however, are not known. We found that exposing a rat to a single stressor primed glutamate synapses in the paraventricular nucleus of the hypothalamus and allowed them to undergo a short-term potentiation (STP) following a burst of high-frequency afferent activity. This transient potentiation requires a corticotrophin-releasing hormone–dependent depression of postsynaptic NMDA receptors (NMDARs). The long-term depression of NMDAR function after stress prevented the vesicular release of an inhibitory retrograde messenger that, in control conditions, arrests STP. Following stress, STP manifested as an increase in the release probability of glutamate that was sufficient to induce multivesicular release. Our findings indicate that the priming of synapses to express STP is a synaptic correlate to stress-induced behavioral and neuroendocrine sensitization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute IMO stress depresses NMDARs.
Figure 2: CRH depresses NMDARs.
Figure 3: CRH and acute IMO stress unmasks activity-dependent STP.
Figure 4: Synaptic priming correlates with behavioral priming.
Figure 5: STP is unmasked by blocking NMDARs, intracellular calcium and SNARE-dependent exocytosis.
Figure 6: Multivesicular release contributes to STP.

Similar content being viewed by others

References

  1. Armario, A., Escorihuela, R.M. & Nadal, R. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci. Biobehav. Rev. 32, 1121–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Bruijnzeel, A.W., Stam, R., Compaan, J.C. & Wiegant, V.M. Stress-induced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system. Brain Res. 908, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. O'Connor, K.A. et al. Stress-induced sensitization of the hypothalamic-pituitary adrenal axis is associated with alterations of hypothalamic and pituitary gene expression. Neuroendocrinology 80, 252–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Cook, C.J. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol. Behav. 82, 751–762 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ono, N., Bedran de Castro, J.C. & McCann, S.M. Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc. Natl. Acad. Sci. USA 82, 3528–3531 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parkes, D., Rivest, S., Lee, S., Rivier, C. & Vale, W. Corticotropin-releasing factor activates c-fos, NGFI-B, and corticotropin-releasing factor gene expression within the paraventricular nucleus of the rat hypothalamus. Mol. Endocrinol. 7, 1357–1367 (1993).

    CAS  PubMed  Google Scholar 

  7. Mansi, J.A., Rivest, S. & Drolet, G. Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF. Endocrinology 137, 4619–4629 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Justice, N.J., Yuan, Z.F., Sawchenko, P.E. & Vale, W. Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central CRF system. J. Comp. Neurol. 511, 479–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Champagne, D., Beaulieu, J. & Drolet, G. CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: a tract-tracing study. J. Neuroendocrinol. 10, 119–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Liposits, Z., Paull, W.K., Sétáló, G. & Vigh, S. Evidence for local corticotropin releasing factor (CRF)-immunoreactive neuronal circuits in the paraventricular nucleus of the rat hypothalamus. An electron microscopic immunohistochemical analysis. Histochemistry 83, 5–16 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Sheng, H. et al. Corticotropin-releasing hormone (CRH) depresses N-methyl-D-aspartate receptor–mediated current in cultured rat hippocampal neurons via CRH receptor type 1. Endocrinology 149, 1389–1398 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Blank, T., Nijholt, I., Eckart, K. & Spiess, J. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J. Neurosci. 22, 3788–3794 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van den Pol, A.N., Wuarin, J. & Dudek, F. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250, 1276–1278 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Ziegler, D.R. & Herman, J.P. Local integration of glutamate signaling in the hypothalamic paraventricular region: regulation of glucocorticoid stress responses. Endocrinology 141, 4801–4804 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Makara, G.B. & Stark, E. Effect of intraventricular glutamate on ACTH release. Neuroendocrinology 18, 213–216 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Bartanusz, V. et al. Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66, 247–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Panatier, A. et al. Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Keller, C., Bruelisauer, A., Lemaire, M. & Enz, A. Brain pharmacokinetics of a nonpeptidic corticotropin-releasing factor receptor antagonist. Drug Metab. Dispos. 30, 173–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Brenowitz, S.D. & Regehr, W.G. Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron 45, 419–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Branco, T., Staras, K., Darcy, K.J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burrone, J., O′Byrne, M. & Murthy, V.N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Frank, C.A., Kennedy, M.J., Goold, C.P., Marek, K.W. & Davis, G.W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52, 663–677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Regehr, W.G., Carey, M.R. & Best, A.R. Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iremonger, K.J. & Bains, J.S. Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus. J. Neurosci. 29, 7349–7358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pretel, S. & Piekut, D. Coexistence of corticotropin-releasing factor and enkephalin in the paraventricular nucleus of the rat. J. Comp. Neurol. 294, 192–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. & van den Pol, A.N. μ-opioid receptor–mediated depression of the hypothalamic hypocretin/orexin arousal system. J. Neurosci. 28, 2814–2819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manzoni, O.J., Manabe, T. & Nicoll, R.A. Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265, 2098–2101 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Lau, C.G. et al. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J. Neurosci. 30, 242–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lledo, P.M., Zhang, X., Sudhof, T.C., Malenka, R.C. & Nicoll, R.A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Petrini, E.M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vyklicky, L., Patneau, D.K. & Mayer, M.L. Modulation of excitatory synaptic transmission by drugs that reduce desensitization at AMPA/kainate receptors. Neuron 7, 971–984 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, G.B., Heynen, A.J. & Bear, M.F. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Phil. Trans. R. Soc. Lond. B 364, 357–367 (2009).

    Article  Google Scholar 

  38. Morishita, W., Marie, H. & Malenka, R.C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat. Neurosci. 8, 1043–1050 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Y. et al. Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 126, 533–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y., Dubé, C.M., Rice, C.J. & Baram, T.Z. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J. Neurosci. 28, 2903–2911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Givalois, L., Arancibia, S. & Tapia-Arancibia, L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress. Brain Res. Mol. Brain Res. 75, 166–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Y. et al. Effects of memantine alone and with acute 'binge' cocaine on hypothalamic-pituitary-adrenal activity in the rat. Eur. J. Pharmacol. 352, 65–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, S., Rivier, C. & Torres, G. Induction of c-fos and CRF mRNA by MK-801 in the parvocellular paraventricular nucleus of the rat hypothalamus. Brain Res. Mol. Brain Res. 24, 192–198 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Pechnick, R.N., George, R. & Poland, R.E. Characterization of the effects of the acute and repeated administration of MK-801 on the release of adrenocorticotropin, corticosterone and prolactin in the rat. Eur. J. Pharmacol. 164, 257–263 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Hewitt, S.A., Wamsteeker, J.I., Kurz, E.U. & Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Wong, Y.N., Cassano, W.J. Jr. & D'mello, A.P. Acute stress–induced facilitation of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 71, 354–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Risbrough, V.B. & Stein, M.B. Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm. Behav. 50, 550–561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nemeroff, C.B. et al. Posttraumatic stress disorder: a state-of-the-science review. J. Psychiatr. Res. 40, 1–21 (2006).

    Article  PubMed  Google Scholar 

  49. Zorrilla, E.P. & Koob, G.F. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov. Today 15, 371–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luther, J.A. et al. Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J. Neuroendocrinol. 14, 929–932 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Bains laboratory and Q.J. Pittman for comments and thoughtful discussion regarding the manuscript. V.M. was supported by a fellowship from the Hotchkiss Brain Institute. J.S.B. is an Alberta Heritage Foundation for Medical Research Senior Scholar. This work was funded by an operating grant from the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Contributions

J.B.K., V.M. and D.V.B. designed and conducted the experiments and analyzed the data. J.B.K. prepared and wrote the manuscript. J.S.B. designed the experiments, prepared the manuscript and supervised the project.

Corresponding author

Correspondence to Jaideep S Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmiski, J., Marty, V., Baimoukhametova, D. et al. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat Neurosci 13, 1257–1264 (2010). https://doi.org/10.1038/nn.2629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing