Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neural mechanism for exacerbation of headache by light

Abstract

The perception of migraine headache, which is mediated by nociceptive signals transmitted from the cranial dura mater to the brain, is uniquely exacerbated by exposure to light. We found that exacerbation of migraine headache by light is prevalent among blind individuals who maintain non–image-forming photoregulation in the face of massive rod/cone degeneration. Using single-unit recording and neural tract tracing in the rat, we identified dura-sensitive neurons in the posterior thalamus whose activity was distinctly modulated by light and whose axons projected extensively across layers I–V of somatosensory, visual and associative cortices. The cell bodies and dendrites of such dura/light-sensitive neurons were apposed by axons originating from retinal ganglion cells (RGCs), predominantly from intrinsically photosensitive RGCs, the principle conduit of non–image-forming photoregulation. We propose that photoregulation of migraine headache is exerted by a non–image-forming retinal pathway that modulates the activity of dura-sensitive thalamocortical neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projections of RGCs to the lateral posterior thalamic nuclei (LP) and posterior thalamic nuclear group (Po).
Figure 2: Photosensitivity of dura-sensitive thalamic neurons.
Figure 3: Close apposition between dura/light-sensitive neurons and retinal afferents in lateral posterior thalamic nuclei and posterior thalamic nuclear group.
Figure 4: Cortical projections of three dura/light-sensitive thalamic neurons juxtacellularly filled with TMR-dextran.

Similar content being viewed by others

References

  1. Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders: second edition. Cephalalgia 24, 9–160 (2004).

  2. Selby, G. & Lance, J.W. Observations on 500 cases of migraine and allied vascular headache. J. Neurol. Neurosurg. Psychiatry 23, 23–32 (1960).

    Article  CAS  Google Scholar 

  3. Markowitz, S., Saito, K. & Moskowitz, M.A. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8, 83–91 (1988).

    Article  CAS  Google Scholar 

  4. Penfield, W. & McNaughton, F. Dural headache and innervation of the dura mater. Arch. Neurol. Psychiatry 44, 43–75 (1940).

    Article  Google Scholar 

  5. Burstein, R., Yamamura, H., Malick, A. & Strassman, A.M. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79, 964–982 (1998).

    Article  CAS  Google Scholar 

  6. Strassman, A.M., Raymond, S.A. & Burstein, R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384, 560–564 (1996).

    Article  CAS  Google Scholar 

  7. Burstein, R., Yarnitsky, D., Goor-Aryeh, I., Ransil, B.J. & Bajwa, Z.H. An association between migraine and cutaneous allodynia. Ann. Neurol. 47, 614–624 (2000).

    Article  CAS  Google Scholar 

  8. Burstein, R., Cutrer, F.M. & Yarnitsky, D. The development of cutaneous allodynia during a migraine attack: clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123, 1703–1709 (2000).

    Article  Google Scholar 

  9. Kawasaki, A. & Purvin, V.A. Photophobia as the presenting visual symptom of chiasmal compression. J. Neuroophthalmol. 22, 3–8 (2002).

    Article  Google Scholar 

  10. Liveing, E. On Megrim, Sick Headache (Arts & Boeve Publishers, Nijmegen, The Netherlands, 1873).

  11. Lebensohn, J.E. Photophobia: mechanism and implications. Am. J. Ophthalmol. 34, 1294–1300 (1951).

    Article  CAS  Google Scholar 

  12. Aurora, S.K., Cao, Y., Bowyer, S.M. & Welch, K.M. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache 39, 469–476 (1999).

    Article  CAS  Google Scholar 

  13. Lamonte, M., Silberstein, S.D. & Marcelis, J.F. Headache associated with aseptic meningitis. Headache 35, 520–526 (1995).

    Article  CAS  Google Scholar 

  14. Welty, T.E. & Horner, T.G. Pathophysiology and treatment of subarachnoid hemorrhage. Clin. Pharm. 9, 35–39 (1990).

    CAS  PubMed  Google Scholar 

  15. Lowenfeld, I. The Dazzling Syndrome (Wane State University Press, Detroit, Michigan, USA, 1993).

  16. Miller, N.R. Photophobia. in Walsh and Hoyt's Clinical Neuro-ophthlmology (ed. N.R. Miller) 1099–1106 (Williams & Wilkins, Baltimore, 1985).

  17. Lucas, R.J., Douglas, R.H. & Foster, R.G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4, 621–626 (2001).

    Article  CAS  Google Scholar 

  18. Klein, D.C. & Weller, J.L. Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177, 532–533 (1972).

    Article  CAS  Google Scholar 

  19. Freedman, M.S. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502–504 (1999).

    Article  CAS  Google Scholar 

  20. Hattar, S. et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76–81 (2003).

    Article  CAS  Google Scholar 

  21. Lucas, R.J., Freedman, M.S., Munoz, M., Garcia-Fernandez, J.M. & Foster, R.G. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505–507 (1999).

    Article  CAS  Google Scholar 

  22. Gooley, J.J., Lu, J., Fischer, D. & Saper, C.B. A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106 (2003).

    Article  CAS  Google Scholar 

  23. Güler, A.D. et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102–105 (2008).

    Article  Google Scholar 

  24. Hattar, S. et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    Article  Google Scholar 

  25. Hannibal, J. & Fahrenkrug, J. Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res. 316, 99–113 (2004).

    Article  CAS  Google Scholar 

  26. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. Melanopsin: An opsin in melanophores, brain and eye. Proc. Natl. Acad. Sci. USA 95, 340–345 (1998).

    Article  CAS  Google Scholar 

  27. Provencio, I. et al. A novel human opsin in the inner retina. J. Neurosci. 20, 600–605 (2000).

    Article  CAS  Google Scholar 

  28. Berson, D.M., Dunn, F.A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  CAS  Google Scholar 

  29. Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article  CAS  Google Scholar 

  30. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003).

    Article  CAS  Google Scholar 

  31. Malick, A., Jakubowski, M., Elmquist, J.K., Saper, C.B. & Burstein, R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc. Natl. Acad. Sci. USA 98, 9930–9935 (2001).

    Article  CAS  Google Scholar 

  32. Zagami, A.S. & Lambert, G.A. Stimulation of cranial vessels excites nociceptive neurones in several thalamic nuclei of the cat. Exp. Brain Res. 81, 552–566 (1990).

    Article  CAS  Google Scholar 

  33. Davis, K.D. & Dostrovsky, J.O. Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res. 454, 89–100 (1988).

    Article  CAS  Google Scholar 

  34. Dacey, D.M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005).

    Article  CAS  Google Scholar 

  35. Wong, K.Y., Dunn, F.A., Graham, D.M. & Berson, D.M. Synaptic influences on rat ganglion-cell photoreceptors. J. Physiol. (Lond.) 582, 279–296 (2007).

    Article  CAS  Google Scholar 

  36. Hannibal, J. et al. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 45, 4202–4209 (2004).

    Article  Google Scholar 

  37. Berson, D.M. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch. 454, 849–855 (2007).

    Article  CAS  Google Scholar 

  38. Tu, D.C. et al. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987–999 (2005).

    Article  CAS  Google Scholar 

  39. Herkenham, M. Laminar organization of thalamic projections to the rat neocortex. Science 207, 532–535 (1980).

    Article  CAS  Google Scholar 

  40. Ingvar, M. & Hsieh, J.-C. The image of pain. in Textbook of Pain (eds P.D. Wall & R. Melzack) 215–233 (Churchill Livingston, London, 1999).

  41. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    Article  Google Scholar 

  42. Donchin, O., Gribova, A., Steinberg, O., Bergman, H. & Vaadia, E. Primary motor cortex is involved in bimanual coordination. Nature 395, 274–278 (1998).

    Article  CAS  Google Scholar 

  43. Mountcastle, V.B., Lynch, J.C., Georgopoulos, A., Sakata, H. & Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    Article  CAS  Google Scholar 

  44. Lowel, S. & Singer, W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255, 209–212 (1992).

    Article  CAS  Google Scholar 

  45. Livingstone, M.S. & Hubel, D.H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

    Article  CAS  Google Scholar 

  46. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, Orlando, Florida, USA, 1998).

  47. Burstein, R. & Jakubowski, M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann. Neurol. 55, 27–36 (2004).

    Article  CAS  Google Scholar 

  48. Yamamura, H., Malick, A., Chamberlin, N.L. & Burstein, R. Cardiovascular and neuronal responses to head stimulation reflect central sensitization and cutaneous allodynia in a rat model of migraine. J. Neurophysiol. 81, 479–493 (1999).

    Article  CAS  Google Scholar 

  49. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    Article  CAS  Google Scholar 

  50. Gauriau, C. & Bernard, J.F. Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J. Neurosci. 24, 752–761 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Friedman, A. Recober, M. Carmen-Wilson and A. Mauskop for sharing their blind migraine patients, and L. Villanueva and J.-F. Bernard for teaching us the juxtacellular labeling technique. This research was supported by US National Institutes of Health grants NS-051484 and NS-035611. K.D. was supported in part by an unrestricted grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Contributions

R.B., M.J. and R.N. designed the study. R.N., V.K., J.J.G. and R.B. conducted the various experiments. M.J., R.N., C.B.S. and K.D. contributed to data analysis and presentation. R.B. and M.J. wrote the manuscript.

Corresponding author

Correspondence to Rami Burstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 26609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noseda, R., Kainz, V., Jakubowski, M. et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci 13, 239–245 (2010). https://doi.org/10.1038/nn.2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing