Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Representing information in cell assemblies: persistent activity mediated by semilunar granule cells

Abstract

Here we found that perforant path stimulation in rat hippocampal slices evoked long-lasting barrages of synaptic inputs in subpopulations of dentate gyrus mossy cells and hilar interneurons. Synaptic barrages triggered persistent firing in hilar neurons (hilar up-states). We found that synaptic barrages originate from semilunar granule cells (SGCs), glutamatergic neurons in the inner molecular layer that generate long-duration plateau potentials in response to excitatory synaptic input. MK801, nimodipine and nickel all abolished both stimulus-evoked plateau potentials in SGCs and synaptic barrages in downstream hilar neurons without blocking fast synaptic transmission. Hilar up-states triggered functional inhibition in granule cells that persisted for more than 10 s. Hilar cell assemblies, identified by simultaneous triple and paired intracellular recordings, were linked by persistent firing in SGCs. Population responses recorded in hilar neurons accurately encoded stimulus identity. Stimulus-evoked up-states in the dentate gyrus represent a potential cellular basis for hippocampal working memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-lasting synaptic barrages in hilar neurons evoked by perforant path stimulation.
Figure 2: Hilar up-states require glutamatergic synaptic inputs.
Figure 3: Perforant pathway stimulation evokes plateau potentials and persistent firing in SGCs.
Figure 4: Correlation between plateau potentials in SGCs and hilar up-states following perforant pathway stimulation.
Figure 5: SGCs receive large glutamatergic inputs.
Figure 6: Plateau potentials in SGCs activated by NMDA receptors.
Figure 7: Both plateau potentials in SGCs and synaptic barrages in hilar neurons require L- and T-type VGCCs.
Figure 8: Perforant pathway-evoked up-states generate hilar cell assemblies that encode stimulus identity.

Similar content being viewed by others

References

  1. Schiller, J., Major, G., Koester, H.J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  Google Scholar 

  2. Sanchez-Vives, M.V. & McCormick, D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  3. Egorov, A.V., Hamam, B.N., Fransén, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    Article  CAS  Google Scholar 

  4. Colombo, M. & Gross, C.G. Responses of inferior temporal cortex and hippocampal neurons during delayed matching to sample in monkeys (Macaca fascicularis). Behav. Neurosci. 108, 443–455 (1994).

    Article  CAS  Google Scholar 

  5. Fraser, D.D. & MacVicar, B.A. Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J. Neurosci. 16, 4113–4128 (1996).

    Article  CAS  Google Scholar 

  6. Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  7. Funahashi, S., Chafee, M.V. & Goldman-Rakic, P.S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  8. Hampson, R.E., Simeral, J.D. & Deadwyler, S.A. Keeping on track: firing of hippocampal neurons during delayed-nonmatch-to-sample performance. J. Neurosci. 22, RC198 (2002).

    Article  Google Scholar 

  9. Major, G. & Tank, D. Persistent neural activity: prevalence and mechanisms. Curr. Opin. Neurobiol. 14, 675–684 (2004).

    Article  CAS  Google Scholar 

  10. Aksay, E., Gamkrelidze, G., Seung, H.S., Baker, R. & Tank, D.W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001).

    Article  CAS  Google Scholar 

  11. McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  12. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992).

    Article  CAS  Google Scholar 

  13. Hebb, D. The Organization of Behavior (John Wiley & Sons: New York, 1949).

  14. Seung, H.S. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93, 13339–13344 (1996).

    Article  CAS  Google Scholar 

  15. Abeles, M. et al. Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci. USA 92, 8616–8620 (1995).

    Article  CAS  Google Scholar 

  16. Amit, D.J. & Mongillo, G. Spike-driven synaptic dynamics generating working memory states. Neural Comput. 15, 565–596 (2003).

    Article  Google Scholar 

  17. Goldman, M.S., Levine, J.H., Major, G., Tank, D.W. & Seung, H.S. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003).

    Article  Google Scholar 

  18. Seung, H.S., Lee, D.D., Reis, B.Y. & Tank, D.W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  Google Scholar 

  19. Williams, P.A., Larimer, P., Gao, Y. & Strowbridge, B.W. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27, 13756–13761 (2007).

    Article  CAS  Google Scholar 

  20. Strowbridge, B.W., Buckmaster, P.S. & Schwartzkroin, P.A. Potentiation of spontaneous synaptic activity in rat mossy cells. Neurosci. Lett. 142, 205–210 (1992).

    Article  CAS  Google Scholar 

  21. Scharfman, H.E. Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. J. Neurophysiol. 70, 742–757 (1993).

    Article  CAS  Google Scholar 

  22. Strowbridge, B.W. & Schwartzkroin, P.A. Transient potentiation of spontaneous EPSPs in rat mossy cells induced by depolarization of a single neurone. J. Physiol. (Lond.) 494, 493–510 (1996).

    Article  CAS  Google Scholar 

  23. Cheng, S. & Frank, L.M. New experiences enhance coordinated neural activity in the hippocampus. Neuron 57, 303–313 (2008).

    Article  CAS  Google Scholar 

  24. Soriano, E. & Frotscher, M. Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 4, 65–69 (1994).

    Article  CAS  Google Scholar 

  25. Scharfman, H.E. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J. Neurophysiol. 74, 179–194 (1995).

    Article  CAS  Google Scholar 

  26. Buckmaster, P.S., Wenzel, H.J., Kunkel, D.D. & Schwartzkroin, P.A. Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J. Comp. Neurol. 366, 271–292 (1996).

    Article  CAS  Google Scholar 

  27. Larimer, P. & Strowbridge, B.W. Nonrandom local circuits in the dentate gyrus. J. Neurosci. 28, 12212–12223 (2008).

    Article  CAS  Google Scholar 

  28. Mayer, M.L. & Westbrook, G.L. Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. (Lond.) 394, 501–527 (1987).

    Article  CAS  Google Scholar 

  29. Xu, W. & Lipscombe, D. Neuronal Ca(V)1.3α(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  Google Scholar 

  30. Fox, A.P., Nowycky, M.C. & Tsien, R.W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. (Lond.) 394, 149–172 (1987).

    Article  CAS  Google Scholar 

  31. Chow, K.Y., Wu, C., Sui, G.P. & Fry, C.H. Role of the T-type Ca2+ current on the contractile performance of guinea pig detrusor smooth muscle. Neurourol. Urodyn. 22, 77–82 (2003).

    Article  CAS  Google Scholar 

  32. Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  CAS  Google Scholar 

  33. Miller, L.M. & Recanzone, G.H. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proc. Natl. Acad. Sci. USA 106, 5931–5935 (2009).

    Article  CAS  Google Scholar 

  34. MacLean, J.N., Watson, B.O., Aaron, G.B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  Google Scholar 

  35. Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    Article  Google Scholar 

  36. Scharfman, H.E. Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 11, 1660–1673 (1991).

    Article  CAS  Google Scholar 

  37. Ishizuka, N., Weber, J. & Amaral, D.G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    Article  CAS  Google Scholar 

  38. Scharfman, H.E. Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J. Neurophysiol. 72, 2167–2180 (1994).

    Article  CAS  Google Scholar 

  39. Jefferys, J.G. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol. Rev. 75, 689–723 (1995).

    Article  CAS  Google Scholar 

  40. Williams, S.R., Tóth, T.I., Turner, J.P., Hughes, S.W. & Crunelli, V. The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J. Physiol. (Lond.) 505, 689–705 (1997).

    Article  CAS  Google Scholar 

  41. Wei, D.S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275 (2001).

    Article  CAS  Google Scholar 

  42. Hughes, S.W., Cope, D.W., Tóth, T.I., Williams, S.R. & Crunelli, V. All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. J. Physiol. (Lond.) 517, 805–815 (1999).

    Article  CAS  Google Scholar 

  43. Lo, F.S. & Erzurumlu, R.S. L-type calcium channel-mediated plateau potentials in barrelette cells during structural plasticity. J. Neurophysiol. 88, 794–801 (2002).

    Article  CAS  Google Scholar 

  44. Koschak, A. et al. Molecular nature of anomalous L-type calcium channels in mouse cerebellar granule cells. J. Neurosci. 27, 3855–3863 (2007).

    Article  CAS  Google Scholar 

  45. Talley, E.M. et al. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J. Neurosci. 19, 1895–1911 (1999).

    Article  CAS  Google Scholar 

  46. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  47. Sass, K.J. et al. Specificity in the correlation of verbal memory and hippocampal neuron loss: dissociation of memory, language and verbal intellectual ability. J. Clin. Exp. Neuropsychol. 14, 662–672 (1992).

    Article  CAS  Google Scholar 

  48. Smith, D.H., Lowenstein, D.H., Gennarelli, T.A. & McIntosh, T.K. Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci. Lett. 168, 151–154 (1994).

    Article  CAS  Google Scholar 

  49. Lothman, E.W., Stringer, J.L. & Bertram, E.H. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res. Suppl. 7, 301–313 (1992).

    CAS  PubMed  Google Scholar 

  50. Halasy, K. & Somogyi, P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 411–429 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Pressler and R. Galán for helpful discussions; S. Jones and J. Frazier for helpful comments on the manuscript; and P. Puzerey for technical assistance. This work was supported by National Institutes of Health (NIH) Grant R01-NS33590 to B.W.S.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed, data analyzed and manuscript written by P.L. and B.W.S. The experimental work was performed by P.L.

Corresponding author

Correspondence to Ben W Strowbridge.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 18289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larimer, P., Strowbridge, B. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13, 213–222 (2010). https://doi.org/10.1038/nn.2458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing