Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent site-specific changes of glutamate receptor composition in vivo

Abstract

The subunit composition of postsynaptic non–NMDA-type glutamate receptors (GluRs) determines the function and trafficking of the receptor. Changes in GluR composition have been implicated in the homeostasis of neuronal excitability and synaptic plasticity underlying learning. Here, we imaged GluRs in vivo during the formation of new postsynaptic densities (PSDs) at Drosophila neuromuscular junctions coexpressing GluRIIA and GluRIIB subunits. GluR composition was independently regulated at directly neighboring PSDs on a submicron scale. Immature PSDs typically had large amounts of GluRIIA and small amounts of GluRIIB. During subsequent PSD maturation, however, the GluRIIA/GluRIIB composition changed and became more balanced. Reducing presynaptic glutamate release increased GluRIIA, but decreased GluRIIB incorporation. Moreover, the maturation of GluR composition correlated in a site-specific manner with the level of Bruchpilot, an active zone protein that is essential for mature glutamate release. Thus, we show that an activity-dependent, site-specific control of GluR composition can contribute to match pre- and postsynaptic assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP-labeled GluRIIA and GluRIIB expressed from genomic constructs are fully functional.
Figure 2: Patch-clamp recordings of NMJs expressing only GluRIIAGFP or GluRIIBGFP.
Figure 3: In vivo imaging of GluR composition during PSD maturation of developing Drosophila NMJs.
Figure 4: FRAP of GluRIIA and GluRIIB during synapse formation and maturation.
Figure 5: The BRP-dependent release component controls the maturation of GluR composition.
Figure 6: Influence of intracellular C-terminal domains on FRAP behavior in vivo.
Figure 7: Control of GluR composition and structural plasticity at the NMJ.

Similar content being viewed by others

References

  1. McAllister, A.K. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30, 425–450 (2007).

    Article  CAS  Google Scholar 

  2. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002).

    Article  CAS  Google Scholar 

  3. Zhai, R.G. & Bellen, H.J. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19, 262–270 (2004).

    Google Scholar 

  4. Witzemann, V. et al. Acetylcholine receptor epsilon–subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc. Natl. Acad. Sci. USA 93, 13286–13291 (1996).

    Article  CAS  Google Scholar 

  5. Takahashi, T. Postsynaptic receptor mechanisms underlying developmental speeding of synaptic transmission. Neurosci. Res. 53, 229–240 (2005).

    Article  CAS  Google Scholar 

  6. Derkach, V.A., Oh, M.C., Guire, E.S. & Soderling, T.R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8, 101–113 (2007).

    Article  CAS  Google Scholar 

  7. Turrigiano, G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 17, 318–324 (2007).

    Article  CAS  Google Scholar 

  8. Schuster, C.M. et al. Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254, 112–114 (1991).

    Article  CAS  Google Scholar 

  9. Petersen, S.A., Fetter, R.D., Noordermeer, J.N., Goodman, C.S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

    Article  CAS  Google Scholar 

  10. DiAntonio, A. Glutamate receptors at the Drosophila neuromuscular junction. Int. Rev. Neurobiol. 75, 165–179 (2006).

    Article  CAS  Google Scholar 

  11. Qin, G. et al. Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J. Neurosci. 25, 3209–3218 (2005).

    Article  CAS  Google Scholar 

  12. Featherstone, D.E. et al. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J. Neurosci. 25, 3199–3208 (2005).

    Article  CAS  Google Scholar 

  13. Marrus, S.B., Portman, S.L., Allen, M.J., Moffat, K.G. & DiAntonio, A. Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J. Neurosci. 24, 1406–1415 (2004).

    Article  CAS  Google Scholar 

  14. DiAntonio, A., Petersen, S.A., Heckmann, M. & Goodman, C.S. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J. Neurosci. 19, 3023–3032 (1999).

    Article  CAS  Google Scholar 

  15. Pawlu, C., DiAntonio, A. & Heckmann, M. Postfusional control of quantal current shape. Neuron 42, 607–618 (2004).

    Article  CAS  Google Scholar 

  16. Sigrist, S.J., Thiel, P.R., Reiff, D.F. & Schuster, C.M. The postsynaptic glutamate receptor subunit DGluR-IIA mediates long-term plasticity in Drosophila. J. Neurosci. 22, 7362–7372 (2002).

    Article  CAS  Google Scholar 

  17. Sigrist, S.J. et al. Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature 405, 1062–1065 (2000).

    Article  CAS  Google Scholar 

  18. Rasse, T.M. et al. Glutamate receptor dynamics organizing synapse formation in vivo. Nat. Neurosci. 8, 898–905 (2005).

    Article  CAS  Google Scholar 

  19. Davis, G.W., DiAntonio, A., Petersen, S.A. & Goodman, C.S. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20, 305–315 (1998).

    Article  CAS  Google Scholar 

  20. Yoshihara, M., Adolfsen, B., Galle, K.T. & Littleton, J.T. Retrograde signaling by Syt 4 induces presynaptic release and synapse-specific growth. Science 310, 858–863 (2005).

    Article  CAS  Google Scholar 

  21. Reiff, D.F., Thiel, P.R. & Schuster, C.M. Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J. Neurosci. 22, 9399–9409 (2002).

    Article  CAS  Google Scholar 

  22. Broadie, K.S. & Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144–166 (1993).

    Article  CAS  Google Scholar 

  23. Nishikawa, K. & Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905–7915 (1995).

    Article  CAS  Google Scholar 

  24. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  25. Sweeney, S.T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C.J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    Article  CAS  Google Scholar 

  26. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  Google Scholar 

  27. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  Google Scholar 

  28. Atwood, H.L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002).

    Article  CAS  Google Scholar 

  29. Barry, M.F. & Ziff, E.B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12, 279–286 (2002).

    Article  CAS  Google Scholar 

  30. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  31. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  Google Scholar 

  32. Zhong, Y., Budnik, V. & Wu, C.F. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J. Neurosci. 12, 644–651 (1992).

    Article  CAS  Google Scholar 

  33. Sigrist, S.J., Reiff, D.F., Thiel, P.R., Steinert, J.R. & Schuster, C.M. Experience-dependent strengthening of Drosophila neuromuscular junctions. J. Neurosci. 23, 6546–6556 (2003).

    Article  CAS  Google Scholar 

  34. Zhong, Y. & Wu, C.F. Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila. J. Neurosci. 24, 1439–1445 (2004).

    Article  CAS  Google Scholar 

  35. Bogdanik, L. et al. The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J. Neurosci. 24, 9105–9116 (2004).

    Article  CAS  Google Scholar 

  36. Featherstone, D.E. et al. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron 27, 71–84 (2000).

    Article  CAS  Google Scholar 

  37. Ruiz-Canada, C. et al. New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42, 567–580 (2004).

    Article  CAS  Google Scholar 

  38. Akaaboune, M., Grady, R.M., Turney, S., Sanes, J.R. & Lichtman, J.W. Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron 34, 865–876 (2002).

    Article  CAS  Google Scholar 

  39. Schmid, A. et al. Non-NMDA-type glutamate receptors are essential for maturation, but not for initial assembly of synapses at Drosophila neuromuscular junctions. J. Neurosci. 26, 11267–11277 (2006).

    Article  CAS  Google Scholar 

  40. Chen, K., Merino, C., Sigrist, S.J. & Featherstone, D.E. The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton. J. Neurosci. 25, 6667–6675 (2005).

    Article  CAS  Google Scholar 

  41. Ehlers, M.D., Heine, M., Groc, L., Lee, M.C. & Choquet, D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54, 447–460 (2007).

    Article  CAS  Google Scholar 

  42. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  43. Thiagarajan, T.C., Lindskog, M. & Tsien, R.W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  Google Scholar 

  44. Thiagarajan, T.C., Lindskog, M., Malgaroli, A. & Tsien, R.W. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 52, 156–175 (2007).

    Article  CAS  Google Scholar 

  45. Holcman, D. & Triller, A. Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys. J. 91, 2405–2415 (2006).

    Article  CAS  Google Scholar 

  46. Frank, C.A., Kennedy, M.J., Goold, C.P., Marek, K.W. & Davis, G.W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52, 663–677 (2006).

    Article  CAS  Google Scholar 

  47. Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis, but not neurotransmitter release. Cell 109, 101–112 (2002).

    Article  CAS  Google Scholar 

  48. Bacci, A. et al. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin vesicle–associated membrane protein 2. J. Neurosci. 21, 6588–6596 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D.E. Featherstone for help with establishing patch-clamp recordings from Drosophila embryos and A. DiAntonio for fly stocks. This work was supported by grants from the Deutsche Forschungsgemeinschaft to S.J.S. (SI849/2-1 and 2-2, TP A16/SFB 406, TP B25/SFB581, SFB487) and to M.H. (HE 2621/4-1 and TP B22/SFB 581), and by formel.1 grants to S.H. and R.J.K. from the Medical Faculty of the University of Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan J Sigrist.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Methods (PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, A., Hallermann, S., Kittel, R. et al. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci 11, 659–666 (2008). https://doi.org/10.1038/nn.2122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing