Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function

Abstract

Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of VGAT-ChR2(H134R)-EYFP BAC transgenic mice.
Figure 2: Functional characterization of hippocampal interneurons in VGAT-ChR2(H134R)-EYFP BAC transgenic mice.
Figure 3: Functional characterization of ChAT-ChR2(H134R)-EYFP line 6 BAC transgenic mice.
Figure 4: In vivo striatal electrophysiology for ChAT-ChR2(H134R)-EYFP line 6 BAC transgenic mice.
Figure 5: Functional characterization of TPH2-ChR2(H134R)-EYFP BAC transgenic mice.
Figure 6: Functional characterization of Pvalb-ChR2(H134R)-EYFP BAC transgenic mice.

Similar content being viewed by others

References

  1. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  2. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  3. Johansen, J.P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl. Acad. Sci. USA 107, 12692–12697 (2010).

    Article  CAS  Google Scholar 

  4. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  5. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  6. Alilain, W.J. et al. Light-induced rescue of breathing after spinal cord injury. J. Neurosci. 28, 11862–11870 (2008).

    Article  CAS  Google Scholar 

  7. Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  Google Scholar 

  8. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  9. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  10. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  Google Scholar 

  11. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    Article  CAS  Google Scholar 

  12. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  Google Scholar 

  13. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  14. Stuber, G.D., Hnasko, T.S., Britt, J.P., Edwards, R.H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    Article  CAS  Google Scholar 

  15. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  16. Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).

    Article  CAS  Google Scholar 

  17. Cruikshank, S.J., Urabe, H., Nurmikko, A.V. & Connors, B.W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    Article  CAS  Google Scholar 

  18. Varga, V. et al. Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453 (2009).

    Article  CAS  Google Scholar 

  19. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  21. Tomita, H. et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS ONE 4, e7679 (2009).

    Article  Google Scholar 

  22. Hagglund, M., Borgius, L., Dougherty, K.J. & Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252 (2010).

    Article  Google Scholar 

  23. Dhawale, A.K., Hagiwara, A., Bhalla, U.S., Murthy, V.N. & Albeanu, D.F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13, 1404–1412 (2010).

    Article  CAS  Google Scholar 

  24. Chuhma, N., Tanaka, K.F., Hen, R. & Rayport, S. Functional connectome of the striatal medium spiny neuron. J. Neurosci. 31, 1183–1192 (2011).

    Article  CAS  Google Scholar 

  25. Sagne, C. et al. Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett. 417, 177–183 (1997).

    Article  CAS  Google Scholar 

  26. Gasnier, B. The loading of neurotransmitters into synaptic vesicles. Biochimie 82, 327–337 (2000).

    Article  CAS  Google Scholar 

  27. Gunaydin, L.A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  Google Scholar 

  28. Qin, C. & Luo, M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161, 827–837 (2009).

    Article  CAS  Google Scholar 

  29. Bennett, B.D., Callaway, J.C. & Wilson, C.J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20, 8493–8503 (2000).

    Article  CAS  Google Scholar 

  30. Vandermaelen, C.P. & Aghajanian, G.K. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289, 109–119 (1983).

    Article  CAS  Google Scholar 

  31. Liu, R.J., Lambe, E.K. & Aghajanian, G.K. Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases. Eur. J. Neurosci. 21, 945–958 (2005).

    Article  CAS  Google Scholar 

  32. Lee, S.H., Govindaiah, G. & Cox, C.L. Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. J. Physiol. (Lond.) 582, 195–208 (2007).

    Article  CAS  Google Scholar 

  33. Huguenard, J.R. & Prince, D.A. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci. 12, 3804–3817 (1992).

    Article  CAS  Google Scholar 

  34. Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 197–213 (1980).

    Article  CAS  Google Scholar 

  35. Katzel, D., Zemelman, B.V., Buetfering, C., Wolfel, M. & Miesenbock, G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat. Neurosci. 14, 100–107 (2011).

    Article  Google Scholar 

  36. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  37. Zhao, S. et al. Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS ONE 5, e12506 (2010).

    Article  Google Scholar 

  38. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  39. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  Google Scholar 

  40. Brahma, B., Forman, R.E., Stewart, E.E., Nicholson, C. & Rice, M.E. Ascorbate inhibits edema in brain slices. J. Neurochem. 74, 1263–1270 (2000).

    Article  CAS  Google Scholar 

  41. MacGregor, D.G., Chesler, M. & Rice, M.E. HEPES prevents edema in rat brain slices. Neurosci. Lett. 303, 141–144 (2001).

    Article  CAS  Google Scholar 

  42. Ren, J. et al. Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011).

    Article  CAS  Google Scholar 

  43. Jog, M.S. et al. Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117, 141–152 (2002).

    Article  CAS  Google Scholar 

  44. Kubota, Y. et al. Stable encoding of task structure coexists with flexible coding of task events in sensorimotor striatum. J. Neurophysiol. 102, 2142–2160 (2009).

    Article  Google Scholar 

  45. Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z. & Graybiel, A.M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Miao, K. Harley, L. Strickland and J. Chemla for technical assistance with mouse husbandry and genotyping, Q. Liu and members of the NeuroTransgenic lab at Duke University for pronuclear injections of BAC DNA and other members of the Feng laboratory for their support, C. Keller-McGandy for help with histology in the Graybiel lab, and J. Ren and other members of the Luo lab for providing electrophysiology expertise and input. This work was supported by an American Recovery and Reinvestment Act grant from the US National Institute of Mental Health (RC1-MH088434) to G.F., a National Alliance for Research on Schizophrenia and Depression: The Brain and Behavior Research Foundation Young Investigator award and US National Institutes of Health Ruth L. Kirschstein National Research Service award (F32MH084460) to J.T.T. and a National Institute of Mental Health grant to A.M.G. (R01 MH060379).

Author information

Authors and Affiliations

Authors

Contributions

G.F., K.D. and G.J.A. initiated the project. K.D. provided ChR2(H134R) DNA constructs. S.Z., L.Q. and B.G. generated the ChR2 BAC transgenic founder lines. S.Z. and L.Q. screened the founder lines. S.Z. performed all confocal imaging experiments. J.T.T. performed electrophysiological recordings, and analyzed and interpreted acute-brain-slice experiments for all mouse lines. J.T. performed electrophysiological recordings, and M.L. and J.T. analyzed and interpreted acute brain slice experiments on ChAT-ChR2(H134R)-EYFP line 6 and VGAT-ChR2(H134R)-EYFP line 8 mice. H.E.A. performed in vivo electrophysiology, and H.E.A. and A.M.G. analyzed and interpreted in vivo electrophysiology data on ChAT-ChR2(H134R)-EYFP line 6 mice. J.T.T. and G.F. wrote the manuscript.

Corresponding author

Correspondence to Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–3 (PDF 6231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Ting, J., Atallah, H. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8, 745–752 (2011). https://doi.org/10.1038/nmeth.1668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing