Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Chronic optical access through a polished and reinforced thinned skull

Abstract

We present a method to form an optical window in the mouse skull that spans millimeters and is stable for months without causing brain inflammation. This enabled us to repeatedly image blood flow in cortical capillaries of awake mice and determine long-range correlations in speed. We also repeatedly imaged dendritic spines, microglia and angioarchitecture, as well as used illumination to drive motor output via optogenetics and induce microstrokes via photosensitizers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PoRTS window procedure, optical properties and basic capabilities.
Figure 2: Long-range coherence of RBC-flow velocity in capillaries in the cortex of awake head-fixed mice through a PoRTS window.
Figure 3: Examples of cortical physiology evoked through the PoRTS window.

Similar content being viewed by others

References

  1. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  2. Levasseur, J.E., Wei, E.P., Raper, A.J., Kontos, A.A. & Patterson, J.L. Stroke 6, 308–317 (1975).

    Article  CAS  Google Scholar 

  3. Grutzendler, J., Kasthuri, N. & Gan, W.B. Nature 420, 812–816 (2002).

    Article  CAS  Google Scholar 

  4. Trachtenberg, J.T. et al. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  5. Brown, C.E., Li, P., Boyd, J.D., Delaney, K.R. & Murphy, T.H. J. Neurosci. 27, 4101–4109 (2007).

    Article  CAS  Google Scholar 

  6. Xu, H.T., Pan, F., Yang, G. & Gan, W.B. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  Google Scholar 

  7. Hauss-Wegrzyniak, B., Lynch, M.A., Vraniak, P.D. & Wenk, G.L. Exp. Neurol. 176, 336–341 (2002).

    Article  CAS  Google Scholar 

  8. Sohler, T.P., Lothrop, G.N. & Forbes, H.S. J. Pharmacol. Exp. Ther. 71, 331–335 (1941).

    CAS  Google Scholar 

  9. Holtmaat, A. et al. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  Google Scholar 

  10. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  CAS  Google Scholar 

  11. Stoll, G. & Jander, S. Prog. Neurobiol. 58, 233–247 (1999).

    Article  CAS  Google Scholar 

  12. Pekny, M. & Nilsson, M. Glia 50, 427–434 (2005).

    Article  Google Scholar 

  13. Fox, M.D. & Raichle, M.E. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  Google Scholar 

  14. Blinder, P., Shih, A.Y., Rafie, C.A. & Kleinfeld, D. Proc. Natl. Acad. Sci. USA 107, 12670–12675 (2010).

    Article  CAS  Google Scholar 

  15. Sawinski, J. et al. Proc. Natl. Acad. Sci. USA 106, 19557–19562 (2009).

    Article  CAS  Google Scholar 

  16. Jung, S. et al. Mol. Cell. Biol. 20, 4106–4114 (2010).

    Article  Google Scholar 

  17. Arenkiel, B.R. et al. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  18. Masino, S.A., Kwon, M.C., Dory, Y. & Frostig, R.D. Proc. Natl. Acad. Sci. USA 90, 9998–10002 (1993).

    Article  CAS  Google Scholar 

  19. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  20. Kleinfeld, D. & Delaney, K.R. J. Comp. Neurol. 375, 89–108 (1996).

    Article  CAS  Google Scholar 

  21. Denk, W. et al. J. Neurosci. Methods 54, 151–162 (1994).

    Article  CAS  Google Scholar 

  22. Tsai, P.S. & Kleinfeld, D. in Methods for In Vivo Optical Imaging 2nd edn. (ed., R.D. Frostig) 59–115 (CRC Press, 2009).

    Google Scholar 

  23. Tsai, P.S. et al. Neuron 39, 27–41 (2003).

    Article  CAS  Google Scholar 

  24. Nguyen, Q.-T., Dolnick, E.M., Driscoll, J. & Kleinfeld, D. in Methods for In Vivo Optical Imaging 2nd edn. (ed., R.D. Frostig) 117–142 (CRC Press, Boca Raton, 2009).

    Google Scholar 

  25. Nguyen, Q.-T., Tsai, P.S. & Kleinfeld, D. J. Neurosci. Methods 156, 351–359 (2006).

    Article  Google Scholar 

  26. Shih, A.Y. et al. J. Cereb. Blood Flow Metab. 29, 738–751 (2009).

    Article  Google Scholar 

  27. Shih, A.Y. et al. in Imaging in Neuroscience and Development (ed., R. Yuste) volume 2, chapter 15 (Cold Spring Harbor Laboratory Press, in the press).

  28. Valmianski, I. et al. J. Neurophysiol. 104, 1803–1811 (2010).

    Article  Google Scholar 

  29. Drew, P.J., Blinder, P., Cauwenberghs, G., Shih, A.Y. & Kleinfeld, D. J. Comput. Neurosci. 29, 5–11 (2010).

    Article  Google Scholar 

  30. McMenamin, P.G. J. Comp. Neurol. 405, 553–562 (1999).

    Article  CAS  Google Scholar 

  31. Ferezou, I. et al. Neuron 56, 907–923 (2007).

    Article  CAS  Google Scholar 

  32. Knutsen, P.M., Derdikman, D. & Ahissar, E. J. Neurophysiol. 93, 2294–2301 (2005).

    Article  Google Scholar 

  33. Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D. & Kleinfeld, D. Proc. Natl. Acad. Sci. USA 104, 365–370 (2007).

    Article  CAS  Google Scholar 

  34. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light 6th edn. (Pergamon Press, Oxford, 1980).

    Google Scholar 

Download references

Acknowledgements

We thank B. Friedman, C. Portera-Cailliau and K. Svoboda for critical comments on an early version of the manuscript, M. Fuentes and C. Petersen for advice on head fixation, D.N. Hill for discussions on data analysis, J. Lee and K. Yang for help with animal husbandry, J.D. Moore for discussions on optical stimulation, and S. Tayman for a gift of tin oxide. This work was supported by grants from the US National Institutes of Health (EB003832, MH085499, NS059832 and RR021907 to D.K., and NS066361 to K.A.) and the Dana Program in Brain and Immuno-imaging (to K.A.) and fellowships from the Israeli Science Foundation (to P.B.), the Canadian Institutes of Health Research and American Heart Association (to A.Y.S.), the Human Frontiers Scientific Program (to P.M.K.), and the US National Multiple Sclerosis Society (to D.D.).

Author information

Authors and Affiliations

Authors

Contributions

P.J.D., A.Y.S. and P.S.T. conceived the PoRTS window; J.D.D. and D.K. developed the imaging tools; K.A., D.D., P.J.D., D.K., A.Y.S. and P.S.T. designed the experiments; P.J.D., P.M.K., A.Y.S. and P.S.T. carried out the experiments; P.B., P.J.D., D.K. and P.S.T. analyzed data; and P.J.D., D.K. and A.Y.S. wrote the manuscript.

Corresponding author

Correspondence to David Kleinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-10, Supplementary Note 1 (PDF 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, P., Shih, A., Driscoll, J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7, 981–984 (2010). https://doi.org/10.1038/nmeth.1530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing