Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NKCC1 transporter facilitates seizures in the developing brain

Abstract

During development, activation of Cl-permeable GABAA receptors (GABAA-R) excites neurons as a result of elevated intracellular Cl levels and a depolarized Cl equilibrium potential (ECl). GABA becomes inhibitory as net outward neuronal transport of Cl develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na+-K+-2Cl cotransporter (NKCC1) facilitates the accumulation of Cl in neurons. The NKCC1 blocker bumetanide shifted ECl negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABAA-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl-extruding transporter (KCC2) in human and rat cortex showed that Cl transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental regulation of NKCC1 and KCC2 in perinatal rat and human cortex.
Figure 2: Effects of phenobarbital on epileptiform activity in the neonatal rat hippocampus in vitro.
Figure 3: Effects of NKCC1 inhibition on EGABA and spontaneous network activity.
Figure 4: Age-dependent effect of bumetanide on epileptiform activity.
Figure 5: Effects of bumetanide in Slc12a2−/− mice.
Figure 6: Bumetanide for neonatal seizure therapy.

Similar content being viewed by others

References

  1. Ronen, G.M., Penney, S. & Andrews, W. The epidemiology of clinical neonatal seizures in Newfoundland: a population-based study. J. Pediatr. 134, 71–75 (1999).

    Article  CAS  Google Scholar 

  2. Painter, M.J., Bergman, I. & Crumrine, P. Neonatal seizures. Pediatr. Clin. North Am. 33, 91–109 (1986).

    Article  CAS  Google Scholar 

  3. Scher, M.S. et al. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 91, 128–134 (1993).

    CAS  PubMed  Google Scholar 

  4. Brunquell, P.J., Glennon, C.M., DiMario, F.J. Jr., Lerer, T. & Eisenfeld, L. Prediction of outcome based on clinical seizure type in newborn infants. J. Pediatr. 140, 707–712 (2002).

    Article  Google Scholar 

  5. Jensen, F.E., Holmes, G.L., Lombroso, C.T., Blume, H.K. & Firkusny, I.R. Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia 33, 971–980 (1992).

    Article  CAS  Google Scholar 

  6. Baram, T.Z. Long-term neuroplasticity and functional consequences of single versus recurrent early-life seizures. Ann. Neurol. 54, 701–705 (2003).

    Article  Google Scholar 

  7. Holmes, G.L. Effects of early seizures on later behavior and epileptogenicity. Ment. Retard. Dev. Disabil. Res. Rev. 10, 101–105 (2004).

    Article  Google Scholar 

  8. Swann, J.W. The impact of seizures on developing hippocampal networks. Prog. Brain Res. 147, 347–354 (2005).

    Article  Google Scholar 

  9. Sanchez, R.M., Dai, W., Levada, R.E., Lippman, J.J. & Jensen, F.E. AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J. Neurosci. 25, 3442–3451 (2005).

    Article  CAS  Google Scholar 

  10. Connell, J., Oozeer, R., de Vries, L., Dubowitz, L.M. & Dubowitz, V. Clinical and EEG response to anticonvulsants in neonatal seizures. Arch. Dis. Child. 64, 459–464 (1989).

    Article  CAS  Google Scholar 

  11. Painter, M.J. et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N. Engl. J. Med. 341, 485–489 (1999).

    Article  CAS  Google Scholar 

  12. Owens, D.F. & Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727 (2002).

    Article  CAS  Google Scholar 

  13. Ben Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  Google Scholar 

  14. Dzhala, V.I. & Staley, K.J. Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J. Neurosci. 23, 1840–1846 (2003).

    Article  CAS  Google Scholar 

  15. Khazipov, R. et al. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur. J. Neurosci. 19, 590–600 (2004).

    Article  Google Scholar 

  16. Stein, V., Hermans-Borgmeyer, I., Jentsch, T.J. & Hubner, C.A. Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J. Comp. Neurol. 468, 57–64 (2004).

    Article  CAS  Google Scholar 

  17. Scher, M.S., Alvin, J., Gaus, L., Minnigh, B. & Painter, M.J. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr. Neurol. 28, 277–280 (2003).

    Article  Google Scholar 

  18. Staley, K., Smith, R., Schaack, J., Wilcox, C. & Jentsch, T.J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17, 543–551 (1996).

    Article  CAS  Google Scholar 

  19. Delpire, E. Cation-chloride cotransporters in neuronal communication. News Physiol. Sci. 15, 309–312 (2000).

    CAS  PubMed  Google Scholar 

  20. Payne, J.A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003).

    Article  CAS  Google Scholar 

  21. Yamada, J. et al. Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J. Physiol. (Lond.) 557, 829–841 (2004).

    Article  CAS  Google Scholar 

  22. Isenring, P., Jacoby, S.C., Payne, J.A. & Forbush, B. III. Comparison of Na-K-Cl cotransporters. NKCC1, NKCC2, and the HEK cell Na-L-Cl cotransporter. J. Biol. Chem. 273, 11295–11301 (1998).

    Article  CAS  Google Scholar 

  23. Hannaert, P., Alvarez-Guerra, M., Pirot, D., Nazaret, C. & Garay, R.P. Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. Naunyn Schmiedebergs Arch. Pharmacol. 365, 193–199 (2002).

    Article  CAS  Google Scholar 

  24. Plotkin, M.D., Snyder, E.Y., Hebert, S.C. & Delpire, E. Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J. Neurobiol. 33, 781–795 (1997).

    Article  CAS  Google Scholar 

  25. Wang, C. et al. Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Brain Res. Dev. Brain Res. 139, 59–66 (2002).

    Article  CAS  Google Scholar 

  26. Clayton, G.H., Owens, G.C., Wolff, J.S. & Smith, R.L. Ontogeny of cation-Cl– cotransporter expression in rat neocortex. Brain Res. Dev. Brain Res. 109, 281–292 (1998).

    Article  CAS  Google Scholar 

  27. Rivera, C. et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  Google Scholar 

  28. Sullivan, J.E., Witte, M.K., Yamashita, T.S., Myers, C.M. & Blumer, J.L. Pharmacokinetics of bumetanide in critically ill infants. Clin. Pharmacol. Ther. 60, 405–413 (1996).

    Article  CAS  Google Scholar 

  29. Lopez-Samblas, A.M., Adams, J.A., Goldberg, R.N. & Modi, M.W. The pharmacokinetics of bumetanide in the newborn infant. Biol. Neonate 72, 265–272 (1997).

    Article  CAS  Google Scholar 

  30. Lu, J., Karadsheh, M. & Delpire, E. Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J. Neurobiol. 39, 558–568 (1999).

    Article  CAS  Google Scholar 

  31. Sankar, R. & Painter, M.J. Neonatal seizures: after all these years we still love what doesn't work. Neurology 64, 776–777 (2005).

    Article  Google Scholar 

  32. Twyman, R.E., Rogers, C.J. & Macdonald, R.L. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann. Neurol. 25, 213–220 (1989).

    Article  CAS  Google Scholar 

  33. Staley, K. Enhancement of the excitatory actions of GABA by barbiturates and benzodiazepines. Neurosci. Lett. 146, 105–107 (1992).

    Article  CAS  Google Scholar 

  34. Dzhala, V.I. & Staley, K.J. Transition from interictal to ictal activity in limbic networks in vitro. J. Neurosci. 23, 7873–7880 (2003).

    Article  CAS  Google Scholar 

  35. Dzhala, V.I. & Staley, K.J. Mechanisms of fast ripples in the hippocampus. J. Neurosci. 24, 8896–8906 (2004).

    Article  CAS  Google Scholar 

  36. Ben Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J.L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).

    Article  CAS  Google Scholar 

  37. Khalilov, I., Dzhala, V., Ben Ari, Y. & Khazipov, R. Dual role of GABA in the neonatal rat hippocampus. Dev. Neurosci. 21, 310–319 (1999).

    Article  CAS  Google Scholar 

  38. Leinekugel, X. et al. Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296, 2049–2052 (2002).

    Article  CAS  Google Scholar 

  39. Delpire, E., Lu, J., England, R., Dull, C. & Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet. 22, 192–195 (1999).

    Article  CAS  Google Scholar 

  40. Sung, K.W., Kirby, M., McDonald, M.P., Lovinger, D.M. & Delpire, E. Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J. Neurosci. 20, 7531–7538 (2000).

    Article  CAS  Google Scholar 

  41. Kanaka, C. et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104, 933–946 (2001).

    Article  CAS  Google Scholar 

  42. Owens, D.F., Boyce, L.H., Davis, M.B. & Kriegstein, A.R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414–6423 (1996).

    Article  CAS  Google Scholar 

  43. Staley, K.J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).

    Article  CAS  Google Scholar 

  44. Jin, X., Huguenard, J.R. & Prince, D.A. Impaired Cl− extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. J. Neurophysiol. 93, 2117–2126 (2005).

    Article  CAS  Google Scholar 

  45. Hochman, D.W., Baraban, S.C., Owens, J.W. & Schwartzkroin, P.A. Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270, 99–102 (1995).

    Article  CAS  Google Scholar 

  46. Stringer, J.L. & Pan, E. Effect of seizures and diuretics on the osmolality of the cerebrospinal fluid. Brain Res. 745, 328–330 (1997).

    Article  CAS  Google Scholar 

  47. Haglund, M.M. & Hochman, D.W. Furosemide and mannitol suppression of epileptic activity in the human brain. J. Neurophysiol. 94, 907–918 (2005).

    Article  CAS  Google Scholar 

  48. Hesdorffer, D.C., Stables, J.P., Hauser, W.A., Annegers, J.F. & Cascino, G. Are certain diuretics also anticonvulsants? Ann. Neurol. 50, 458–462 (2001).

    Article  CAS  Google Scholar 

  49. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. & Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421 (2002).

    Article  CAS  Google Scholar 

  50. Ulfig, N., Nickel, J. & Bohl, J. Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 291, 433–443 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health and National Institute of Neurological Disorders and Stroke grants NS34360, NS34700, and NS40109 (to K.J.S.), NS36758 (to E.D.), NS31718 (to F.E.J.), NS38475 (to F.E.J. and D.M.T.) and the Hearst Foundation (to D.M.T.). Some tissue samples were provided by the University of Maryland Brain Tissue Bank for Developmental Disorders, Baltimore, Maryland, USA supported by N01-HD-43368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J Staley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhala, V., Talos, D., Sdrulla, D. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 11, 1205–1213 (2005). https://doi.org/10.1038/nm1301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing