Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N-cadherin pathway after spinal cord injury

Abstract

Central nervous system (CNS) injury transforms naive astrocytes into reactive astrocytes, which eventually become scar-forming astrocytes that can impair axonal regeneration and functional recovery. This sequential phenotypic change, known as reactive astrogliosis, has long been considered unidirectional and irreversible. However, we report here that reactive astrocytes isolated from injured spinal cord reverted in retrograde to naive astrocytes when transplanted into a naive spinal cord, whereas they formed astrocytic scars when transplanted into injured spinal cord, indicating the environment-dependent plasticity of reactive astrogliosis. We also found that type I collagen was highly expressed in the spinal cord during the scar-forming phase and induced astrocytic scar formation via the integrin–N-cadherin pathway. In a mouse model of spinal cord injury, pharmacological blockade of reactive astrocyte–type I collagen interaction prevented astrocytic scar formation, thereby leading to improved axonal regrowth and better functional outcomes. Our findings reveal environmental cues regulating astrocytic fate decisions, thereby providing a potential therapeutic target for CNS injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective in situ isolation and gene expression analysis of astrocytes from naive and injured spinal cords.
Figure 2: Environment-dependent morphological changes in NAs transplanted into naive or injured spinal cords.
Figure 3: Environment-dependent transcriptional profiles of NAs transplanted into naive or injured spinal cord.
Figure 4: The plasticity of reactive astrogliosis depends on the surrounding spinal cord environment.
Figure 5: RNA–seq analysis reveals the role of Col I in the induction of N-cadherin-dependent adhesion in RAs.
Figure 6: Inhibition of integrin-mediated RA–Col I interaction prevents astrocytic scar formation and promotes functional recovery after SCI.

Similar content being viewed by others

References

  1. McDonald, J.W. & Sadowsky, C. Spinal-cord injury. Lancet 359, 417–425 (2002).

    Article  PubMed  Google Scholar 

  2. Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12, 829–834 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Silver, J. & Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Karimi-Abdolrezaee, S. & Billakanti, R. Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol. Neurobiol. 46, 251–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Ridet, J.L., Malhotra, S.K., Privat, A. & Gage, F.H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Buss, A. et al. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127, 34–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, M.A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liddelow, S.A. & Barres, B.A. Regeneration: not everything is scary about a glial scar. Nature 532, 182–183 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Windle, W.F., Clemente, C.D. & Chambers, W.W. Inhibition of formation of a glial barrier as a means of permitting a peripheral nerve to grow into the brain. J. Comp. Neurol. 96, 359–369 (1952).

    Article  CAS  PubMed  Google Scholar 

  10. Freeman, L.W. Return of spinal cord function in mammals after transecting lesions. Ann. NY Acad. Sci. 58, 564–569 (1954).

    Article  Google Scholar 

  11. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cregg, J.M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197–207 (2014).

    Article  PubMed  Google Scholar 

  13. Courtine, G. et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat. Med. 13, 561–566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Renault-Mihara, F. et al. Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO Mol. Med. 3, 682–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vázquez-Chona, F. & Geisert, E.E.J. Jr. N-cadherin at the glial scar in the rat. Brain Res. 838, 45–50 (1999).

    Article  PubMed  Google Scholar 

  16. McKillop, W.M., Dragan, M., Schedl, A. & Brown, A. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 61, 164–177 (2013).

    Article  PubMed  Google Scholar 

  17. Mann, B. et al. Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. USA 96, 1603–1608 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Takeuchi, K. et al. Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat. Commun. 4, 2740 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Hagino, S. et al. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia 42, 130–138 (2003).

    Article  PubMed  Google Scholar 

  21. Ilieva, H., Polymenidou, M. & Cleveland, D.W. Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. von Karstedt, S. et al. Cancer cell–autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27, 561–573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumamaru, H. et al. Direct isolation and RNA–seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nat. Commun. 3, 1140 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Kumamaru, H. et al. Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord. Stem Cells 31, 1535–1547 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Tran, M.D., Wanner, I.B. & Neary, J.T. Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures. J. Neurochem. 105, 272–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Previtali, S.C., Archelos, J.J. & Hartung, H.P. Modulation of the expression of integrins on glial cells during experimental autoimmune encephalomyelitis. A central role for TNF-α. Am. J. Pathol. 151, 1425–1435 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yonezawa, T. et al. Type IV collagen induces expression of thrombospondin-1 that is mediated by integrin α1β1 in astrocytes. Glia 58, 755–767 (2010).

    PubMed  Google Scholar 

  30. Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garg, A. et al. Non-enzymatic dissociation of human mesenchymal stromal cells improves chemokine-dependent migration and maintains immunosuppressive function. Cytotherapy 16, 545–559 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yokota, K. et al. Engrafted neural stem/progenitor cells promote functional recovery through synapse reorganization with spared host neurons after spinal cord injury. Stem Cell Rep. 5, 264–277 (2015).

    Article  CAS  Google Scholar 

  33. Faulkner, J.R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rolls, A. et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 5, e171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rolls, A., Shechter, R. & Schwartz, M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10, 235–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Shechter, R., Raposo, C., London, A., Sagi, I. & Schwartz, M. The glial scar–monocyte interplay: a pivotal resolution phase in spinal cord repair. PLoS One 6, e27969 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brionne, T.C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Abe, K., Chu, P.J., Ishihara, A. & Saito, H. Transforming growth factor-β1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Res. 723, 206–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Lutton, C. et al. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J. Neurotrauma 29, 957–970 (2012).

    Article  PubMed  Google Scholar 

  40. DePaul, M.A., Lin, C.Y., Silver, J. & Lee, Y.S. Peripheral nerve transplantation combined with acidic fibroblast growth factor and chondroitinase induces regeneration and improves urinary function in complete spinal cord transected adult mice. PLoS One 10, e0139335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Shintani, Y., Wheelock, M.J. & Johnson, K.R. Phosphoinositide-3 kinase–Rac1–c-Jun NH2-terminal kinase signaling mediates collagen I–induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol. Biol. Cell 17, 2963–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shintani, Y., Hollingsworth, M.A., Wheelock, M.J. & Johnson, K.R. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 66, 11745–11753 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Le Dréau, G. et al. NOV/CCN3 upregulates CCL2 and CXCL1 expression in astrocytes through β1 and β5 integrins. Glia 58, 1510–1521 (2010).

    Article  PubMed  Google Scholar 

  45. Cao, J., Wang, J.S., Ren, X.H. & Zang, W.D. Spinal sample showing p-JNK and p38 associated with the pain signaling transduction of glial cell in neuropathic pain. Spinal Cord 53, 92–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, K. et al. Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression. Glia 61, 2063–2077 (2013).

    Article  PubMed  Google Scholar 

  47. Repici, M. et al. Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury. Neurobiol. Dis. 46, 710–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Kanemaru, K. et al. Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc. Natl. Acad. Sci. USA 110, 11612–11617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Péglion, F. & Etienne-Manneville, S. N-cadherin expression level as a critical indicator of invasion in non-epithelial tumors. Cell Adh Migr. 6, 327–332 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bush, T.G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Silver, J. The glial scar is more than just astrocytes. Exp. Neurol. 286, 147–149 (2016).

    Article  PubMed  Google Scholar 

  52. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, S. et al. C-type lectin–like domain and fibronectin-like type II domain of phospholipase A2 receptor 1 modulate binding and migratory responses to collagen. FEBS Lett. 589, 829–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi, M. et al. Chd5 regulates MuERV-L/MERVL expression in mouse embryonic stem cells via H3K27me3 modification and histone H3.1/H3.2. J. Cell. Biochem. 117, 780–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Harada, A. et al. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res. 43, 775–786 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA–seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and integrated Discovery. Genome Biol. 4, P3 (2003).

    Article  PubMed  Google Scholar 

  59. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA–seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tachibana (Osaka City University) for the gift of anti-nestin antibody. This study was supported by a Grant-in-Aid for Young Scientist (A) (25713053) (S.O.); Challenging Exploratory Research from the Ministry of Education, Science, and Sports (16K15668) (S.O.); a Grant-in-Aid for Young Scientist (B) (16K20059) (K. Kobayakawa); Scientific Research on Innovative Areas (Comprehensive Brain Science Network and Foundation of Synapse Neurocircuit Pathology) (K. Kobayakawa); and research foundations from the general insurance association of Japan (M.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.H. designed and performed most of the experiments with technical help from H.K., T.S., and S.Y. Y.O. performed the RNA–seq analysis. K.Y. and K. Kijima analyzed the data from LMD. K. Kobayakawa, K.H., and Y.N. designed the studies and supervised the overall project. S.O. designed the studies, supervised the overall project, and performed the final manuscript preparation.

Corresponding author

Correspondence to Seiji Okada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Table

Supplementary Figures 1–13 and Supplementary Table 1 (PDF 18120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, M., Kobayakawa, K., Ohkawa, Y. et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N-cadherin pathway after spinal cord injury. Nat Med 23, 818–828 (2017). https://doi.org/10.1038/nm.4354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing