Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain

Abstract

The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts, but its role in neuronal physiology is not clear1. We show here that central nervous system–specific deletion of the gene encoding Rbfox1 results in heightened susceptibility to spontaneous and kainic acid–induced seizures. Electrophysiological recording revealed a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole-transcriptome analyses identified multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rbfox1−/− brains lack Rbfox1 protein expression but possess normal morphology.
Figure 2: Rbfox1−/− brains are epileptic and hyperexcitable.
Figure 3: Rbfox1−/− brain exhibits splicing changes in transcripts affecting synaptic function and neuronal excitation.

Similar content being viewed by others

References

  1. Kuroyanagi, H. Fox-1 family of RNA-binding proteins. Cell. Mol. Life Sci. 66, 3895–3907 (2009).

    Article  CAS  Google Scholar 

  2. Li, Q., Lee, J.A. & Black, D.L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  Google Scholar 

  3. Licatalosi, D.D. & Darnell, R.B. Splicing regulation in neurologic disease. Neuron 52, 93–101 (2006).

    Article  CAS  Google Scholar 

  4. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  Google Scholar 

  5. Nakahata, S. & Kawamoto, S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 33, 2078–2089 (2005).

    Article  CAS  Google Scholar 

  6. Underwood, J.G., Boutz, P.L., Dougherty, J.D., Stoilov, P. & Black, D.L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 25, 10005–10016 (2005).

    Article  CAS  Google Scholar 

  7. Auweter, S.D. et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 25, 163–173 (2006).

    Article  CAS  Google Scholar 

  8. Black, D.L. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69, 795–807 (1992).

    Article  CAS  Google Scholar 

  9. Huh, G.S. & Hynes, R.O. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 8, 1561–1574 (1994).

    Article  CAS  Google Scholar 

  10. Modafferi, E.F. & Black, D.L. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell. Biol. 17, 6537–6545 (1997).

    Article  CAS  Google Scholar 

  11. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

    Article  CAS  Google Scholar 

  12. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  Google Scholar 

  13. Shibata, H., Huynh, D.P. & Pulst, S.M. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum. Mol. Genet. 9, 1303–1313 (2000).

    Article  CAS  Google Scholar 

  14. Bhalla, K. et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J. Hum. Genet. 49, 308–311 (2004).

    Article  Google Scholar 

  15. Barnby, G. et al. Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am. J. Hum. Genet. 76, 950–966 (2005).

    Article  CAS  Google Scholar 

  16. Martin, C.L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 144B, 869–876 (2007).

    Article  CAS  Google Scholar 

  17. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  Google Scholar 

  18. Kiehl, T.R., Shibata, H., Vo, T., Huynh, D.P. & Pulst, S.M. Identification and expression of a mouse ortholog of A2BP1. Mamm. Genome 12, 595–601 (2001).

    Article  CAS  Google Scholar 

  19. Ponthier, J.L. et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J. Biol. Chem. 281, 12468–12474 (2006).

    Article  CAS  Google Scholar 

  20. Yeo, G.W. et al. Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput. Biol. 3, 1951–1967 (2007).

    Article  CAS  Google Scholar 

  21. McKee, A.E. et al. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev. Biol. 5, 14 (2005).

    Article  Google Scholar 

  22. Kim, K.K., Adelstein, R.S. & Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 284, 31052–31061 (2009).

    Article  CAS  Google Scholar 

  23. Kim, K.K., Kim, Y.C., Adelstein, R.S. & Kawamoto, S. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res. (2011).

  24. Lee, J.A., Tang, Z.Z. & Black, D.L. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev. 23, 2284–2293 (2009).

    Article  CAS  Google Scholar 

  25. Damianov, A. & Black, D.L. Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA 16, 405–416 (2010).

    Article  CAS  Google Scholar 

  26. Tang, Z.Z., Zheng, S., Nikolic, J. & Black, D.L. Developmental control of CaV1.2 L-type calcium channel splicing by Fox proteins. Mol. Cell. Biol. 29, 4757–4765 (2009).

    Article  CAS  Google Scholar 

  27. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  28. Graus-Porta, D. et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

    Article  CAS  Google Scholar 

  29. Herrera, D.G. & Robertson, H.A. Activation of c-fos in the brain. Prog. Neurobiol. 50, 83–107 (1996).

    Article  CAS  Google Scholar 

  30. Bertram, E.H. Temporal lobe epilepsy: where do the seizures really begin? Epilepsy Behav. 14 (Suppl 1), 32–37 (2009).

    Article  Google Scholar 

  31. Ben-Ari, Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403 (1985).

    Article  CAS  Google Scholar 

  32. Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

  33. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  Google Scholar 

  34. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  35. Zhang, C. et al. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329, 439–443 (2010).

    Article  CAS  Google Scholar 

  36. Delorenzo, R.J., Sun, D.A. & Deshpande, L.S. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol. Ther. 105, 229–266 (2005).

    Article  CAS  Google Scholar 

  37. Mulley, J.C., Scheffer, I.E., Petrou, S. & Berkovic, S.F. Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol. 16, 171–176 (2003).

    Article  CAS  Google Scholar 

  38. Chapman, A.G., Woodburn, V.L., Woodruff, G.N. & Meldrum, B.S. Anticonvulsant effect of reduced NMDA receptor expression in audiogenic DBA/2 mice. Epilepsy Res. 26, 25–35 (1996).

    Article  CAS  Google Scholar 

  39. Zapata, A. et al. Effects of NMDA-R1 antisense oligodeoxynucleotide administration: behavioral and radioligand binding studies. Brain Res. 745, 114–120 (1997).

    Article  CAS  Google Scholar 

  40. Papale, L.A. et al. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum. Mol. Genet. 18, 1633–1641 (2009).

    Article  CAS  Google Scholar 

  41. Corradini, I., Verderio, C., Sala, M., Wilson, M.C. & Matteoli, M. SNAP-25 in neuropsychiatric disorders. Ann. NY Acad. Sci. 1152, 93–99 (2009).

    Article  CAS  Google Scholar 

  42. Johansson, J.U. et al. An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function. PLoS Genet. 4, e1000278 (2008).

    Article  Google Scholar 

  43. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

  44. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    Article  CAS  Google Scholar 

  45. Grabowski, P.J. Splicing-active nuclear extracts from rat brain. Methods 37, 323–330 (2005).

    Article  CAS  Google Scholar 

  46. Maguire, J., Ferando, I., Simonsen, C. & Mody, I. Excitability changes related to GABAA receptor plasticity during pregnancy. J. Neurosci. 29, 9592–9601 (2009).

    Article  CAS  Google Scholar 

  47. Sugnet, C.W. et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput. Biol. 2, e4 (2006).

    Article  Google Scholar 

  48. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was done in collaboration with X.-D. Fu (University of California, San Diego). We thank N. Copeland (Institute of Molecular and Cell Biology, Singapore) for the recombineering vectors and bacterial strains used for generating the transgenic Rbfox1 mice and J.P. Donahue for his help with the microarray analyses. D. Geschwind, K. Martin and T. Nilsen gave us helpful comments on the manuscript. This work was supported in part by US National Institutes of Health Grants R01 GM049369 to X.D.F., R37 NS30549 and R01 MH076994 to I.M., R01 GM084317 to M.A. and D.L.B., and R01 GM49662 to D.L.B. D.L.B. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Project conception: D.L.B., P.S. and L.T.G. Creation of transgenic mice: P.S. Phenotypic analysis, histology, immunofluorescence and RT-PCR studies: L.T.G. Behavioral seizure analyses: J.M., L.T.G. and I.M. Electrophysiology: J.M. and I.M. iCLIP study: A.D. and C.-H.L. Microarray studies: L.S., L.T.G. and M.A. Manuscript preparation: L.T.G. and D.L.B.

Corresponding author

Correspondence to Douglas L Black.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–3. (PDF 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehman, L., Stoilov, P., Maguire, J. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet 43, 706–711 (2011). https://doi.org/10.1038/ng.841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing