Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

XPB, a subunit of TFIIH, is a target of the natural product triptolide

Abstract

Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II–mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triptolide is a new type of inhibitor of RNAPII-mediated transcription.
Figure 2: Triptolide inhibits TFIIH-dependent basal transcription and nucleotide excision repair.
Figure 3: Triptolide inhibits the DNA-dependent ATPase activity of TFIIH without affecting its DNA helicase activity.
Figure 4: Triptolide binds covalently to XPB subunit of TFIIH and correlation between inhibition of TFIIH ATPase activity and inhibition of cell proliferation by triptolide analogs.

Similar content being viewed by others

References

  1. Koehn, F.E. & Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).

    Article  CAS  Google Scholar 

  2. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  3. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    Article  CAS  Google Scholar 

  4. Griffith, E.C. et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4, 461–471 (1997).

    Article  CAS  Google Scholar 

  5. Low, W.K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20, 709–722 (2005).

    Article  CAS  Google Scholar 

  6. Kupchan, S.M., Court, W.A., Dailey, R.G. Jr., Gilmore, C.J. & Bryan, R.F. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc. 94, 7194–7195 (1972).

    Article  CAS  Google Scholar 

  7. Zhao, X.-M. Supplement to Materia Medica (Zhang's Jie Xing Tang Publishing House, 1765).

  8. Shamon, L.A. et al. Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett. 112, 113–117 (1997).

    Article  Google Scholar 

  9. Gu, W.Z. & Brandwein, S.R. Inhibition of type II collagen-induced arthritis in rats by triptolide. Int. J. Immunopharmacol. 20, 389–400 (1998).

    Article  CAS  Google Scholar 

  10. Yang, S.X., Gao, H.L., Xie, S.S., Zhang, W.R. & Long, Z.Z. Immunosuppression of triptolide and its effect on skin allograft survival. Int. J. Immunopharmacol. 14, 963–969 (1992).

    Article  CAS  Google Scholar 

  11. Kitzen, J.J. et al. Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur. J. Cancer 45, 1764–1772 (2009).

    Article  CAS  Google Scholar 

  12. Qiu, D. et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. J. Biol. Chem. 274, 13443–13450 (1999).

    Article  CAS  Google Scholar 

  13. Chang, W.T. et al. Triptolide and chemotherapy cooperate in tumor cell apoptosis. A role for the p53 pathway. J. Biol. Chem. 276, 2221–2227 (2001).

    Article  CAS  Google Scholar 

  14. Westerheide, S.D., Kawahara, T.L., Orton, K. & Morimoto, R.I. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J. Biol. Chem. 281, 9616–9622 (2006).

    Article  CAS  Google Scholar 

  15. McCallum, C. et al. Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 212, 549–556 (2007).

    Article  CAS  Google Scholar 

  16. McCallum, C. et al. In vitro versus in vivo effects of triptolide: the role of transcriptional inhibition. Therapy 2, 261–273 (2005).

    Article  CAS  Google Scholar 

  17. Vispé, S. et al. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol. Cancer Ther. 8, 2780–2790 (2009).

    Article  Google Scholar 

  18. Pan, J. RNA polymerase—an important molecular target of triptolide in cancer cells. Cancer Lett. 292, 149–152 (2010).

    Article  CAS  Google Scholar 

  19. Leuenroth, S.J. et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl. Acad. Sci. USA 104, 4389–4394 (2007).

    Article  CAS  Google Scholar 

  20. Lindell, T.J., Weinberg, F., Morris, P.W., Roeder, R.G. & Rutter, W.J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170, 447–449 (1970).

    Article  CAS  Google Scholar 

  21. Chao, S.H. et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275, 28345–28348 (2000).

    Article  CAS  Google Scholar 

  22. Reich, E., Franklin, R.M., Shatkin, A.J. & Tatum, E.L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556–557 (1961).

    Article  CAS  Google Scholar 

  23. Alonso, M.A. & Carrasco, L. Action of membrane-active compounds on mammalian cells. Permeabilization of human cells by ionophores to inhibitors of translation and transcription. Eur. J. Biochem. 109, 535–540 (1980).

    Article  CAS  Google Scholar 

  24. Zandomeni, R., Zandomeni, M.C., Shugar, D. & Weinmann, R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J. Biol. Chem. 261, 3414–3419 (1986).

    CAS  PubMed  Google Scholar 

  25. Leuenroth, S.J. & Crews, C.M. Triptolide-induced transcriptional arrest is associated with changes in nuclear substructure. Cancer Res. 68, 5257–5266 (2008).

    Article  CAS  Google Scholar 

  26. Kadesch, T.R. & Chamberlin, M.J. Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template. J. Biol. Chem. 257, 5286–5295 (1982).

    CAS  PubMed  Google Scholar 

  27. Goodrich, J.A. & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145–156 (1994).

    Article  CAS  Google Scholar 

  28. Hieb, A.R., Baran, S., Goodrich, J.A. & Kugel, J.F. An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J. 25, 3100–3109 (2006).

    Article  CAS  Google Scholar 

  29. Gilman, B., Drullinger, L.F., Kugel, J.F. & Goodrich, J.A. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II. J. Biol. Chem. 284, 9093–9098 (2009).

    Article  CAS  Google Scholar 

  30. Kugel, J.F. & Goodrich, J.A. Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape. Mol. Cell. Biol. 22, 762–773 (2002).

    Article  CAS  Google Scholar 

  31. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    Article  CAS  Google Scholar 

  32. Takagi, Y. et al. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Mol. Cell 18, 237–243 (2005).

    Article  CAS  Google Scholar 

  33. LeRoy, G., Drapkin, R., Weis, L. & Reinberg, D. Immunoaffinity purification of the human multisubunit transcription factor IIH. J. Biol. Chem. 273, 7134–7140 (1998).

    Article  CAS  Google Scholar 

  34. Aoyagi, Y. et al. Semisynthesis of C-ring modified triptolide analogues and their cytotoxic activities. Bioorg. Med. Chem. Lett. 16, 1947–1949 (2006).

    Article  CAS  Google Scholar 

  35. Aoyagi, Y. et al. Fluorination of triptolide and its analogues and their cytotoxicity. Bioorg. Med. Chem. Lett. 18, 2459–2463 (2008).

    Article  CAS  Google Scholar 

  36. Ning, L. et al. Cytotoxic biotransformed products from triptonide by Aspergillus niger. Planta Med. 69, 804–808 (2003).

    Article  CAS  Google Scholar 

  37. Li, Z. et al. Design and synthesis of novel C14-hydroxyl substituted triptolide derivatives as potential selective antitumor agents. J. Med. Chem. 52, 5115–5123 (2009).

    Article  CAS  Google Scholar 

  38. Kim, T.K., Ebright, R.H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1422 (2000).

    Article  CAS  Google Scholar 

  39. Kupchan, S.M. & Schubert, R.M. Selective alkylation: a biomimetic reaction of the antileukemic triptolides? Science 185, 791–793 (1974).

    Article  CAS  Google Scholar 

  40. Matsui, Y. et al. Cancer-specific enhancement of cisplatin-induced cytotoxicity with triptolide through an interaction of inactivated glycogen synthase kinase-3beta with p53. Oncogene 27, 4603–4614 (2008).

    Article  CAS  Google Scholar 

  41. Fidler, J.M. et al. PG490–88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol. Cancer Ther. 2, 855–862 (2003).

    CAS  PubMed  Google Scholar 

  42. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  43. Pugh, B.F. Preparation of HeLa nuclear extracts. Methods Mol. Biol. 37, 349–357 (1995).

    CAS  PubMed  Google Scholar 

  44. Miesfeld, R. & Arnheim, N. Identification of the in vivo and in vitro origin of transcription in human rDNA. Nucleic Acids Res. 10, 3933–3949 (1982).

    Article  CAS  Google Scholar 

  45. Sisodia, S.S., Sollner-Webb, B. & Cleveland, D.W. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 7, 3602–3612 (1987).

    Article  CAS  Google Scholar 

  46. Yakovchuk, P., Gilman, B., Goodrich, J.A. & Kugel, J.F. RNA polymerase II and TAFs undergo a slow isomerization after the polymerase is recruited to promoter-bound TFIID. J. Mol. Biol. 397, 57–68 (2010).

    Article  CAS  Google Scholar 

  47. Mason, T.M., Smeaton, M.B., Cheung, J.C., Hanakahi, L.A. & Miller, P.S. End modification of a linear DNA duplex enhances NER-mediated excision of an internal Pt(II)-lesion. Bioconjug. Chem. 19, 1064–1070 (2008).

    Article  CAS  Google Scholar 

  48. Smeaton, M.B., Miller, P.S., Ketner, G. & Hanakahi, L.A. Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining. Nucleic Acids Res. 35, e152 (2007).

    Article  Google Scholar 

  49. Conaway, R.C. & Conaway, J.W. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. Proc. Natl. Acad. Sci. USA 86, 7356–7360 (1989).

    Article  CAS  Google Scholar 

  50. Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388–2392 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by discretionary funds (J.O.L.). We are grateful to A. Gnatt (University of Maryland) for a kind gift of purified RNAPII and B. Sollner-Webb (Johns Hopkins University) for plasmids. We thank D. Yang for earlier support of this project. We thank P. Cole, J. Corden, J. Stivers and members of the Liu lab for helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

D.V.T., J.A.G., P.S.M. and J.O.L. designed the experiments. D.V.T., B.G., Q.-L.H., S.B., W.-K.L. and M.S. performed the experiments. W.-K.L., A.L.D., P.S.M., J.F.K., Y.D. and J.A.G. contributed reagents. D.V.T. and J.O.L. wrote the manuscript.

Corresponding author

Correspondence to Jun O Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–14. (PDF 6290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, D., Gilman, B., He, QL. et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7, 182–188 (2011). https://doi.org/10.1038/nchembio.522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.522

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research