Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we show that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity and discovered that pathogenic mutations shorten TDP43 half-life. New compounds that stimulate autophagy improved TDP43 clearance and localization and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The toxicity of TDP43 depends strongly on dose.
Figure 2: Optical pulse-labeling of TDP43 in primary neurons.
Figure 3: OPL of TDP43.
Figure 4: Induction of autophagy by a family of small molecules.
Figure 5: Autophagy induction reduces TDP43 levels, aggregation and cytoplasmic mislocalization.
Figure 6: Autophagic stimulation improves survival in neuronal and astrocyte models of ALS.

Similar content being viewed by others

References

  1. Robberecht, W. & Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264 (2013).

    Article  CAS  Google Scholar 

  2. Neumann, M. Molecular neuropathology of TDP-43 proteinopathies. Int. J. Mol. Sci. 10, 232–246 (2009).

    Article  CAS  Google Scholar 

  3. van Blitterswijk, M. & Landers, J.E. RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 10.1007/s10048-010-0239-4 (2010).

  4. Ayala, Y.M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article  CAS  Google Scholar 

  5. Moisse, K. et al. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL−/− mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res. 1296, 176–186 (2009).

    Article  CAS  Google Scholar 

  6. Dewey, C.M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Biol. 31, 1098–1108 (2011).

    Article  CAS  Google Scholar 

  7. Davidson, Y.S. et al. TDP-43 pathological changes in early onset familial and sporadic Alzheimer's disease, late onset Alzheimer's disease and Down's Syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol. 122, 703–713 (2011).

    Article  Google Scholar 

  8. Barmada, S.J. & Finkbeiner, S. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev. Neurosci. 21, 251–272 (2010).

    Article  CAS  Google Scholar 

  9. Barmada, S.J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article  CAS  Google Scholar 

  10. Tsao, W. et al. Rodent models of TDP-43: recent advances. Brain Res. 1462, 26–39 (2012).

    Article  CAS  Google Scholar 

  11. Roberson, E.D. Mouse models of frontotemporal dementia. Ann. Neurol. 72, 837–849 (2012).

    Article  CAS  Google Scholar 

  12. Ling, S.-C. et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl. Acad. Sci. USA 107, 13318–13323 (2010).

    Article  CAS  Google Scholar 

  13. Watanabe, S., Kaneko, K. & Yamanaka, K. Accelerated disease onset with stabilized familial Amyotrophic Lateral Sclerosis (ALS)-linked TDP-43 mutations. J. Biol. Chem. 288, 3641–3654 (2013).

    Article  CAS  Google Scholar 

  14. Roscic, A., Baldo, B., Crochemore, C., Marcellin, D. & Paganetti, P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J. Neurochem. 119, 398–407 (2011).

    Article  CAS  Google Scholar 

  15. Prakash, A. & Levy, D.E. Regulation of IRF7 through cell type–specific protein stability. Biochem. Biophys. Res. Commun. 342, 50–56 (2006).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci. Lett. 469, 112–116 (2010).

    Article  CAS  Google Scholar 

  17. Urushitani, M., Sato, T., Bamba, H., Hisa, Y. & Tooyama, I. Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J. Neurosci. Res. 88, 784–797 (2010).

    CAS  PubMed  Google Scholar 

  18. Zhang, X. et al. Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425 (2011).

    Article  CAS  Google Scholar 

  19. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    Article  CAS  Google Scholar 

  20. Wang, I.-F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl. Acad. Sci. USA 109, 15024–15029 (2012).

    Article  CAS  Google Scholar 

  21. Fox, J.H. et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease. Mol. Neurodegener. 5, 26 (2010).

    Article  Google Scholar 

  22. Tsvetkov, A.S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl. Acad. Sci. USA 107, 16982–16987 (2010).

    Article  CAS  Google Scholar 

  23. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  Google Scholar 

  24. Gitcho, M.A. et al. TDP-43 A315T mutation in familial motor neuron disease. Ann. Neurol. 63, 535–538 (2008).

    Article  CAS  Google Scholar 

  25. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  26. Xu, Y.-F. et al. The pathological phenotypes of human TDP-43 transgenic mouse models are independent of downregulation of mouse Tdp-43. PLoS ONE 8, e69864 (2013).

    Article  CAS  Google Scholar 

  27. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat. Protoc. 2, 2024–2032 (2007).

    Article  CAS  Google Scholar 

  28. Wong, E. & Cuervo, A.M. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb. Perspect. Biol. 2, a006734 (2010).

    Article  CAS  Google Scholar 

  29. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  30. Wang, J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4, 947–948 (2008).

    Article  CAS  Google Scholar 

  31. Kim, J., Dalton, V.M., Eggerton, K.P., Scott, S.V. & Klionsky, D.J. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol. Biol. Cell 10, 1337–1351 (1999).

    Article  CAS  Google Scholar 

  32. Bilican, B. et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc. Natl. Acad. Sci. USA 109, 5803–5808 (2012).

    Article  CAS  Google Scholar 

  33. Singh Roy, N. et al. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. 196, 224–234 (2005).

    Article  Google Scholar 

  34. Geser, F. et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch. Neurol. 66, 180–189 (2009).

    Article  Google Scholar 

  35. Kosik, K.S. & Finch, E.A. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J. Neurosci. 7, 3142–3153 (1987).

    Article  CAS  Google Scholar 

  36. Boillée, S., Vande Velde, C. & Cleveland, D.W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  Google Scholar 

  37. Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc. Natl. Acad. Sci. USA 10.1073/pnas.1300398110 (2013).

  38. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 5, 188lr2 (2012).

    Google Scholar 

  39. Stavrovskaya, I.G. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med. 200, 211–222 (2004).

    Article  CAS  Google Scholar 

  40. Szczudlik, A., Tomik, B., Słowik, A. & Kasprzyk, K. Assessment of the efficacy of treatment with pimozide in patients with amyotrophic lateral sclerosis. Introductory notes. Neurol. Neurochir. Pol. 32, 821–829 (1998).

    CAS  PubMed  Google Scholar 

  41. Krauss, S. et al. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1–PP2A protein complex. Nat. Commun. 4, 1511 (2013).

    Article  Google Scholar 

  42. Miller, J. et al. Quantitative relationships between Huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into huntington's disease molecular pathogenesis. J. Neurosci. 30, 10541–10550 (2010).

    Article  CAS  Google Scholar 

  43. Finkbeiner, S. Bridging the Valley of Death of therapeutics for neurodegeneration. Nat. Med. 16, 1227–1232 (2010).

    Article  CAS  Google Scholar 

  44. Dolmetsch, R. & Geschwind, D.H. The Human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    Article  CAS  Google Scholar 

  45. Jacquier, A., Bellouze, S., Blanchard, S., Bohl, D. & Haase, G. Astrocytic protection of spinal motor neurons but not cortical neurons against loss of Als2/alsin function. Hum. Mol. Genet. 18, 2127–2139 (2009).

    Article  CAS  Google Scholar 

  46. Haidet-Phillips, A.M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828 (2011).

    Article  CAS  Google Scholar 

  47. Ko, L.-W., Ko, H.-H.C., Lin, W.-L., Kulathingal, J.G. & Yen, S.-H.C. Aggregates assembled from overexpression of wild-type α-synuclein are not toxic to human neuronal cells. J. Neuropathol. Exp. Neurol. 67, 1084–1096 (2008).

    Article  CAS  Google Scholar 

  48. Mucke, L. et al. High-level neuronal expression of aβ 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    Article  CAS  Google Scholar 

  49. Tsvetkov, A.S. et al. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat. Chem. Biol. 9, 586–592 (2013).

    Article  CAS  Google Scholar 

  50. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Miller, B. Seeley, C. Lomen-Hoerth and the members of the Finkbeiner lab for their generous support and advice. H. Zahed and J. Margulis deserve special acknowledgment for their assistance. We thank G. Howard for editorial assistance and K. Nelson for administrative assistance. We also thank G. Yu and J. Herz (University of Texas, Southwestern) for anti-TDP43 antibodies. This work was supported by National Institutes of Neurological Disorders and Stroke grants K08 NS072233 (to S.J.B.), 3R01 NS039074, R01 NS083390, R43 NS081844 and U24 NS078370 (to S.F.); the ALS Association (S.F.); the Robert Packard Center for ALS Research and the William H. Adams Foundation (S.F.); and Target ALS (S.F.). Additional support was provided by the Roddenberry Stem Cell Program (to S.F.), the Taube-Koret Center for Neurodegenerative Disease (S.F.), the Hellman Family Foundation Alzheimer's Disease Research Program (S.F.), the Protein Folding Diseases Initiative at the University of Michigan (S.J.B.) and the California Institute of Regenerative Medicine TR4-06693 (S.F.) and U01 MH1050135 (S.F.). The animal care facility was partly supported by an US National Institutes of Health Extramural Research Facilities Improvement Program Project (C06 RR018928).

Author information

Authors and Affiliations

Authors

Contributions

S.J.B., A.S., A.A., A.T., S.C. and S.F. designed the study. S.J.B., A.A., X.L. and A.S. cultured cells, performed microscopy and conducted survival analyses. A.T., B.B., C.S. and S.C. provided compounds and iPSCs. M.P. performed in silico drug screening. D.P., D.M.A. and A.D. wrote original scripts for AFM. S.J.B. and A.A. analyzed data, constructed vectors, performed MPC and OPL and transfected neurons. S.B. and S.F. wrote and edited the manuscript.

Corresponding author

Correspondence to Steven Finkbeiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–7. (PDF 2508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmada, S., Serio, A., Arjun, A. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 10, 677–685 (2014). https://doi.org/10.1038/nchembio.1563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing