Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene

Abstract

KLF4 (GKLF/EZF) encodes a transcription factor that is associated with both tumour suppression and oncogenesis. We describe the identification of KLF4 in a functional genomic screen for genes that bypass RASV12-induced senescence. However, in untransformed cells, KLF4 acts as a potent inhibitor of proliferation. KLF4-induced arrest is bypassed by oncogenic RASV12 or by the RAS target cyclin-D1. Remarkably, inactivation of the cyclin-D1 target and the cell-cycle inhibitor p21CIP1 not only neutralizes the cytostatic action of KLF4, but also collaborates with KLF4 in oncogenic transformation. Conversely, KLF4 suppresses the expression of p53 by directly acting on its promoter, thereby allowing for RASV12-mediated transformation and causing resistance to DNA-damage-induced apoptosis. Consistently, KLF4 depletion from breast cancer cells restores p53 levels and causes p53-dependent apoptosis. These results unmask KLF4 as a regulator of p53 that oncogenically transforms cells as a function of p21CIP1 status. Furthermore, they provide a mechanistic explanation for the context-dependent oncogenic or tumour-suppressor functions of KLF4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KLF4 allows the bypass of RASV12-induced senescence.
Figure 2: KLF4 suppresses p53, but induces p21CIP1.
Figure 3: By suppressing p53 expression, KLF4 bypasses RASV12-induced senescence and causes resistance to DNA-damage-induced apoptosis.
Figure 4: KLF4 directly suppresses p53 transcription by binding to its promoter.
Figure 5: KLF4 depletion from breast cancer cells restores p53 levels and causes p53-dependent apoptosis.
Figure 6: Cyclin-D1 is required for proliferative collaboration between KLF4 and RASV12.
Figure 7: p21CIP1 loss converts KLF4 from cell-cycle inhibitor into oncoprotein.
Figure 8: A model for KLF4 function in tumour suppression and oncogenic transformation.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J. Biol. Chem. 271, 20009–20017 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Garrett-Sinha, L. A., Eberspaecher, H., Seldin, M. F. & de Crombrugghe, B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J. Biol. Chem. 271, 31384–31390 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, X., Whitney, E. M., Gao, S. Y. & Yang, V. W. Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J. Mol. Biol. 326, 665–677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, X. et al. Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J. Biol. Chem. 276, 30423–30428 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Geiman, D. E., Ton-That, H., Johnson, J. M. & Yang, V. W. Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res. 28, 1106–1113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, W. et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J. Biol. Chem. 275, 18391–18398 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Jaubert, J., Cheng, J. & Segre, J. A. Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development 130, 2767–2777 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Katz, J. P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    CAS  PubMed  Google Scholar 

  9. Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genet. 22, 356–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Black, A. R., Black, J. D. & Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell Physiol. 188, 143–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ohnishi, S. et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem. Biophys. Res. Commun. 308, 251–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Dang, D. T., Mahatan, C. S., Dang, L. H., Agboola, I. A. & Yang, V. W. Expression of the gut-enriched Kruppel-like factor (Kruppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene 20, 4884–4890 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dang, D. T. et al. Decreased expression of the gut-enriched Kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients. FEBS Lett. 476, 203–207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ton-That, H., Kaestner, K. H., Shields, J. M., Mahatanankoon, C. S. & Yang, V. W. Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett. 419, 239–243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shie, J. L. et al. Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G806–G814 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, W. et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23, 395–402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, D. et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 65, 2746–2754 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Katz, J. P. et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128, 935–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Luo, A. et al. Discovery of Ca(2+)-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene 1, 1 (2003).

    Google Scholar 

  20. Dang, D. T. et al. Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene 22, 3424–3430 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foster, K. W. et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 60, 6488–6495 (2000).

    CAS  PubMed  Google Scholar 

  22. Foster, K. W. et al. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ. 10, 423–434 (1999).

    CAS  PubMed  Google Scholar 

  23. Foster, K. W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24, 1491–1500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  25. Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125–126 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 3, 198–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Peeper, D. S. et al. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biol. 4, 148–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Li, C. et al. The critical role of the PE21 element in oncostatin M-mediated transcriptional repression of the p53 tumor suppressor gene in breast cancer cells. Oncogene 20, 8193–8202 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Filmus, J. et al. Induction of cyclin D1 overexpression by activated ras. Oncogene 9, 3627–3633 (1994).

    CAS  PubMed  Google Scholar 

  34. Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Ruley, H. E. Adenovirus region E1A enables viral and cellular transforming genes to transform primary cells in cultures. Nature 304, 602–606 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–820 (2003).

    Article  CAS  Google Scholar 

  40. Li, C. Y., Suardet, L. & Little, J. B. Potential role of WAF1/Cip1/p21 as a mediator of TGF-β cytoinhibitory effect. J. Biol. Chem. 270, 4971–4974 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Elbendary, A. et al. Transforming growth factor β1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differ. 5, 1301–1307 (1994).

    CAS  PubMed  Google Scholar 

  42. Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA 92, 5545–5549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zarling, J. M. et al. Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc. Natl Acad. Sci. USA 83, 9739–9743 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bellido, T., O'Brien, C. A., Roberson, P. K. & Manolagas, S. C. Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J. Biol. Chem. 273, 21137–21144 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Shiohara, M. et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 84, 3781–3784 (1994).

    CAS  PubMed  Google Scholar 

  46. Rowland, B. D. et al. E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell 2, 55–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Jenkins, T. D., Opitz, O. G., Okano, J. & Rustgi, A. K. Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Kruppel-like factor. J. Biol. Chem. 273, 10747–10754 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Dirac, A. M. & Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem. 278, 11731–11734 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974–978 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Douma, P. van der Sluis and A. Zwaagstra for technical assistance; A. Dirac, M. Voorhoeve and R. Agami for generously providing p(Retro)SUPER vectors encoding p53, cyclin-D1 and p21CIP1; A. Rustgi for a KLF4 expression vector; M. Oren and S. Sukumar for p53 promoter constructs; E. Roos for the pLIPE vector; M. Eilers for a p53-responsive reporter; and M. Epping for p21CIPI−/− MEFs. We thank A. Berns for critically reading the manuscript. This work was supported by grants from the Dutch Cancer Society (KWF) and The Netherlands organization for scientific research (NWO) to B.D.R. and D.S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Peeper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland, B., Bernards, R. & Peeper, D. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7, 1074–1082 (2005). https://doi.org/10.1038/ncb1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing