Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing of cyclin D1 expression within G1 phase is controlled by Rho

A Corrigendum to this article was published on 01 December 2009

Abstract

The expression of cyclin D1 in mid-G1 phase is associated with sustained ERK activity, and we show here that Rho is required for the sustained ERK signal. However, we also report that Rho inhibits an alternative Rac/Cdc42-dependent pathway, which results in a strikingly early G1-phase expression of cyclin D1. Thus, cyclin D1 is induced in mid-G1 phase because a Rho switch couples its expression to sustained ERK activity rather than Rac and Cdc42. Our results show that Rho is crucial for maintaining the correct timing of cyclin D1 expression in G1 phase and describe a new role for cytoskeletal integrity in the regulation of cell cycle progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactivation of Rho family GTPases by toxin A inhibits G1 cell cycle progression.
Figure 2: Effect of Rho-family GTPases on sustained ERK activity and cyclin D1 production.
Figure 3: Effects of Rho or Rho kinase inhibition on ERK activity and cyclin D1 production.
Figure 4: Rac and Cdc42 induce early cyclin D1 production.
Figure 5: Activated Rac1 and Cdc42 induce cyclin D1 production in suspended cells.
Figure 6: Effect of Rho inhibition on Rac/Cdc42 activity.
Figure 7: Rho inhibition uncouples cyclin D1 production from cell spreading.
Figure 8: Effect of Rho inhibition on cyclin D1 expression, Cdk4 activity and G1 phase progression in MEFs.
Figure 9: Regulation of cyclin D1 by a Rho switch.

Similar content being viewed by others

References

  1. Sherr, C. J. G1 phase progression: cycling on cue. Cell 79, 551–555 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1 phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg, R. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Harbour, J. W., Luo, R. X., Dei Santi A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb function as cells move through G1 phase. Cell 98, 859–869 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Degregori, J., Kowalik, T. & Nevins, J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15, 4215–4224 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roovers, K. & Assoian, R. K. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssays 22, 818–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Weber, J. D., Raben, D. M., Phillips, P. J. & Baldessare, J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326, 61–68 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roovers, K., Davey, G., Zhu, X., Bottazzi, M. E. & Assoian, R. K. α5β1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol. Biol. Cell 10, 3197–3204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bohmer, R. M., Scharf, E. & Assoian, R. K. Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol. Biol. Cell 7, 101–111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ridley, A. J. & Hall, A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekman, D. & Hall, A. The small GTP-binding protein Rac regulates growth-factor induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filipodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Aplin, A. E. & Juliano, R. L. Cell anchorage permits efficient signal transduction between Ras and its downstream kinases. J. Biol. Chem. 272, 8849–8852.

  14. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, E. A., King, W. G., Brugge, J. S., Symons, M. & Hynes, R. O. Integrin-mediated signals regulated by members of the Rho family GTPases. J. Cell Biol. 142, 573–586 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X.-D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gjoerup, O., Lukas, J., Bartek, J. & Willumsen, B. M. Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J. Biol. Chem. 273, 18812–18818 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Olson, M. F., Paterson, H. F. & Marshall, C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Weber, J. D., Hu, W., Jefcoat, S. C., Raben, D. M. & Baldassare, J. J. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27Kip1. J. Biol. Chem. 272, 32966–32971 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Aktories, K. & Just, I. Monoglucosylation of low-molecular mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol. 5, 441–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Sekine, A., Fujiwara, M. & Narumiya, S. Asparagine residue in the Rho gene product is the modification site for botulinum ADP-ribosyltransferase. J. Biol. Chem. 264, 8602–8605 (1989).

    CAS  PubMed  Google Scholar 

  23. Chardin, P. et al. The mammalian G protein RhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J. 8, 1087–1092 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren, X.-D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reid, T. et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and Rhophilin in the Rho-binding domain. J. Biol. Chem. 271, 13556–13560 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Amano, M. et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308–1311 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ishizaki, T. et al. Pharmacologic properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol. Pharm. 57, 976–983 (2000).

    CAS  Google Scholar 

  29. Page, K. et al. Characterization of a Rac1 signaling pathway to cyclin D1 expression in airway smooth muscle cells. J. Biol. Chem. 274, 22065–22071 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Sells, M. A. et al. Human p21-activated kinase (Pak-1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Bottazzi, M. E. & Assoian, R. K. The extracellular matrix and mitogenic growth factors control G1 phase cyclins and cyclin-dependent kinase inhibitors. Trends Cell Biol. 7, 348–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1021 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto, M. et al. ADP-ribosylation of the RhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 8, 1449–1455 (1993).

    CAS  PubMed  Google Scholar 

  34. Schwartz, M. A., Toksoz, D. & Khosravi-Far, R. Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway. EMBO J. 15, 6525–6530 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Welsh, C. F. & Assoian, R. K. A growing role for Rho family GTPases as intermediaries in growth factor- and adhesion-dependent cell cycle progression. Biochim. Biophys. Acta 1471, M21–M29 (2000).

    CAS  PubMed  Google Scholar 

  36. Renshaw, M. W., Toksoz, D. & Schwartz, M. A. Involvement of the small GTPase Rho in integrin-mediated activation of mitogen-activated protein kinase. J. Biol. Chem. 271, 21691–21694 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Frost, J. A. et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426–6438 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scita, G. et al. Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J. 19, 2393–2398 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gille, H. & Downward, J. Multiple ras effector pathways contribute to G1 cell cycle progression. J. Biol. Chem. 274, 22033–22040 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Takuwa, N., Fukui, Y. & Takuwa, Y. Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70S6K-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol. Cell. Biol. 19, 1346–1358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moorman, J. P., Luu, D., Wickham, J., Bobak, D. A. & Hahn, C. S. A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival. Oncogene 18, 47–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Hansen, L. K. & Albrecht, J. H. Regulation of the hepatocyte cell cycle by type I collagen matrix: role of cyclin D1. J. Cell Sci. 112, 2971–2981 (1999).

    CAS  PubMed  Google Scholar 

  43. Danen, E. H. J., Sonnenveld, P., Sonnenberg, A. & Yamada, K. M. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J. Cell Biol. 151, 1413–1422 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M. & Assoian, R. K. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E–Cdk2, and phosphorylation of the retinoblastoma protein. J. Cell Biol. 133, 391–403 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Lyerly for the generously providing toxin A, and A. Hall, M. Chou and K. Kaibuchi for generously providing plasmids. These studies were supported by NIH grants CA72639 to R.K.A and HL57900 to M.A.S. C.F.W. is the recipient of an American Society of Clinical Oncology Career Development Award and a Physician–Scientist Developmental Award from the Department of Medicine, University of Miami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine F. Welsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, C., Roovers, K., Villanueva, J. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 3, 950–957 (2001). https://doi.org/10.1038/ncb1101-950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing