Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transgenic mouse model of the ubiquitin/proteasome system

Abstract

Impairment of the ubiquitin/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis of the ubiquitin/proteasome system by generating mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying a constitutively active degradation signal. Administration of proteasome inhibitors to the transgenic animals resulted in a substantial accumulation of GFP in multiple tissues, confirming the in vivo functionality of the reporter. Moreover, accumulation of the reporter was induced in primary neurons by UBB+1, an aberrant ubiquitin found in Alzheimer disease. These transgenic animals provide a tool for monitoring the status of the ubiquitin/proteasome system in physiologic or pathologic conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of UbG76V-GFP transgenic mice.
Figure 2: Functional characterization of UbG76V-GFP expression in primary tissue culture.
Figure 3: Reporter accumulation in livers of proteasome inhibitor–treated UbG76V-GFP mice.
Figure 4: Proteasomal activities in tissues of inhibitor-treated and control mice.
Figure 5: In vivo reporter accumulation after MG-262 administration.
Figure 6: Reporter accumulation in response to UBB+1.

References

  1. Sherman, M.Y. & Goldberg, A.L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001).

    Article  CAS  Google Scholar 

  2. DeSalle, L.M. & Pagano, M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett. 490, 179–189 (2001).

    Article  CAS  Google Scholar 

  3. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  4. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  5. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  6. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  Google Scholar 

  7. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 (1998).

    Article  CAS  Google Scholar 

  8. Lam, Y.A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 9902–9906 (2000).

    Article  CAS  Google Scholar 

  9. Lindsten, K. et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol. 157, 417–427 (2002).

    Article  CAS  Google Scholar 

  10. Mizuno, Y., Hattori, N., Mori, H., Suzuki, T. & Tanaka, K. Parkin and Parkinson's disease. Curr. Opin. Neurol. 14, 477–482 (2001).

    Article  CAS  Google Scholar 

  11. Carrell, R.W. & Lomas, D.A. Conformational disease. Lancet 350, 134–138 (1997).

    Article  CAS  Google Scholar 

  12. Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12 (2002).

    Article  CAS  Google Scholar 

  13. Soto, C. Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207 (2001).

    Article  CAS  Google Scholar 

  14. Verhoef, L.G., Lindsten, K., Masucci, M.G. & Dantuma, N.P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    Article  CAS  Google Scholar 

  15. Floyd, J.A. & Hamilton, B.A. Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring? Neuron 24, 765–766 (1999).

    Article  CAS  Google Scholar 

  16. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  17. Watase, K. et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905–919 (2002).

    Article  CAS  Google Scholar 

  18. Ryan, K.M., Phillips, A.C. & Vousden, K.H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell. Biol. 13, 332–337 (2001).

    Article  CAS  Google Scholar 

  19. Slingerland, J. & Pagano, M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J. Cell Physiol. 183, 10–17 (2000).

    Article  CAS  Google Scholar 

  20. Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA 96, 10403–10408 (1999).

    Article  CAS  Google Scholar 

  21. Meng, L., Kwok, B.H., Sin, N. & Crews, C.M. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 59, 2798–2801 (1999).

    CAS  PubMed  Google Scholar 

  22. Aghajanian, C. et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res. 8, 2505–2511 (2002).

    CAS  PubMed  Google Scholar 

  23. Pati, S. et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99, 3771–3779 (2002).

    Article  CAS  Google Scholar 

  24. Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat. Med. 8, 225–232 (2002).

    Article  CAS  Google Scholar 

  25. Hosseini, H. et al. Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J. Neurobiol. 118, 233–244 (2001).

    CAS  Google Scholar 

  26. Zollner, T.M. et al. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J. Clin. Invest. 109, 671–679 (2002).

    Article  CAS  Google Scholar 

  27. Luo, H. et al. A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation 72, 196–202 (2001).

    Article  CAS  Google Scholar 

  28. Rock, K.L. & Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I–presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).

    Article  CAS  Google Scholar 

  29. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).

    Article  CAS  Google Scholar 

  30. Wong, P.C., Cai, H., Borchelt, D.R. & Price, D.L. Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci. 5, 633–639 (2002).

    Article  CAS  Google Scholar 

  31. Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538–543 (2000).

    Article  CAS  Google Scholar 

  32. Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  33. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  34. Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    Article  CAS  Google Scholar 

  35. McCormack, T. et al. Active site-directed inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism. J. Biol. Chem. 272, 26103–26109 (1997).

    Article  CAS  Google Scholar 

  36. Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94, 6629–6634 (1997).

    Article  CAS  Google Scholar 

  37. Kisselev, A.F. & Goldberg, A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 8, 739–758 (2001).

    Article  CAS  Google Scholar 

  38. Myung, J., Kim, K.B., Lindsten, K., Dantuma, N.P. & Crews, C.M. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol. Cell 7, 411–420 (2001).

    Article  CAS  Google Scholar 

  39. van Leeuwen, F.W. et al. Frameshift mutants of β-amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science 279, 242–247 (1998).

    Article  CAS  Google Scholar 

  40. Perutz, M.F. & Windle, A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144 (2001).

    Article  CAS  Google Scholar 

  41. Sisodia, S.S. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4 (1998).

    Article  CAS  Google Scholar 

  42. Lindsten, K. & Dantuma, N.P. Monitoring the ubiquitin/proteasome system in conformational diseases. Ageing Res. Rev. in the press.

  43. French, B.A. et al. Aggresome formation in liver cells in response to different toxic mechanisms: role of the ubiquitin-proteasome pathway and the frameshift mutant of ubiquitin. Exp. Mol. Pathol. 71, 241–246 (2001).

    Article  CAS  Google Scholar 

  44. Denk, H., Stumptner, C. & Zatloukal, K. Mallory bodies revisited. J. Hepatol. 32, 689–702 (2000).

    Article  CAS  Google Scholar 

  45. Dallaporta, B. et al. Proteasome activation as a critical event of thymocyte apoptosis. Cell Death Differ. 7, 368–373 (2000).

    Article  CAS  Google Scholar 

  46. Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M. & Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  Google Scholar 

  47. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marianne Jellne, Ros-Mari Johansson, Margareta Hagelin and Maj-Britt Alter for technical assistance, and Hidde Ploegh, Eva Backström, Luigi Naldini, Fred van Leeuwen, Elly Hol, David Fischer, Björn Rozell, Johan Brask, Xu Hong, Jelena Petrovic, Petter Höglund and Jacques Neefjes for reagents, advice and technical help. Pronuclear injections were performed by the Karolinska Center for Transgene Technologies, and pathology examinations were performed by the Mouse Pathology Core Facility of the Karolinska Institute. This work was supported by grants awarded by the Swedish Research Council (N.P.D.), Swedish Cancer Society (N.P.D., M.G.M.), the Swedish Foundation of Strategy Research (M.G.M.), the Swedish Alzheimer Foundation (N.P.D.) and the Karolinska Institute. N.P.D. is supported by a fellowship awarded by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico P Dantuma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsten, K., Menéndez-Benito, V., Masucci, M. et al. A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21, 897–902 (2003). https://doi.org/10.1038/nbt851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing