Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges in long-term imaging and quantification of single-cell dynamics

Abstract

Continuous analysis of single cells, over several cell divisions and for up to weeks at a time, is crucial to deciphering rare, dynamic and heterogeneous cell responses, which would otherwise be missed by population or single-cell snapshot analysis. Although the field of long-term single-cell imaging, tracking and analysis is constantly advancing, several technical challenges continue to hinder wider implementation of this important approach. This is a particular problem for mammalian cells, where in vitro observation usually remains the only possible option for uninterrupted long-term, single-cell observation. Efforts must focus not only on identifying and maintaining culture conditions that support normal cellular behavior while allowing high-resolution imaging over time, but also on developing computational methods that enable semiautomatic analysis of the data. Solutions in microscopy hard- and software, computer vision and specialized theoretical methods for analysis of dynamic single-cell data will enable important discoveries in biology and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Continuous long-term quantification of single cells is required to detect heterogeneous and dynamic cellular and molecular behavior.
Figure 2: Every long-term single-cell quantification project requires project-specific optimization of many interdependent data acquisition and analysis components.
Figure 3: Current challenges and potential of continuous long-term single-cell quantification.

Similar content being viewed by others

References

  1. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Filipczyk, A. et al. Network plasticity of pluripotency transcription factors in embryonic stem cells. Nat. Cell Biol. 17, 1235–1246 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Torres-Padilla, M.-E. & Chambers, I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141, 2173–2181 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez Arias, A. & Brickman, J.M. Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol. 23, 650–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nat. Methods 8 (Suppl. 4), S30–S35 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Etzrodt, M., Endele, M. & Schroeder, T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15, 546–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schulte, R. et al. Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Exp. Hematol. 43, 803–811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F. & Theis, F.J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Leng, N. et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat. Methods 12, 947–950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schroeder, T. Tracking hematopoiesis at the single cell level. Ann. NY Acad. Sci. 1044, 201–209 (2005).

    Article  PubMed  Google Scholar 

  18. Hoppe, P.S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Asami, M. et al. The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development 138, 5067–5078 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Bertrand, J.Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eilken, H.M., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M.A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Sung, J.H. et al. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150, 1249–1263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kokkaliaris, K.D. et al. Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification. Blood 128, 1181–1192 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Keller, P.J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 103, 2707–2712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H.K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chhetri, R.K. et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12, 1171–1178 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Udan, R.S., Piazza, V.G., Hsu, C.W., Hadjantonakis, A.-K. & Dickinson, M.E. Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development 141, 4406–4414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Rashidi, N.M. et al. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124, 79–83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pineda, C.M. et al. Intravital imaging of hair follicle regeneration in the mouse. Nat. Protoc. 10, 1116–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vedel, S., Tay, S., Johnston, D.M., Bruus, H. & Quake, S.R. Migration of cells in a social context. Proc. Natl. Acad. Sci. USA 110, 129–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Piwko, W. et al. RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J. 29, 4210–4222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singer, Z.S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Filipczyk, A. et al. Biallelic expression of nanog protein in mouse embryonic stem cells. Cell Stem Cell 13, 12–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, S.-H., Forrester, W. & Lahav, G. Schedule-dependent interaction between anticancer treatments. Science 351, 1204–1208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Lancaster, M.A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Kellogg, R.A., Gómez-Sjöberg, R., Leyrat, A.A. & Tay, S. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nat. Protoc. 9, 1713–1726 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Sackmann, E.K., Fulton, A.L. & Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Magidson, V. & Khodjakov, A. Circumventing photodamage in live-cell microscopy. Methods. Cell Biol. 114, 545–560 (2013).

    Article  PubMed  Google Scholar 

  52. Coutu, D.L. & Schroeder, T. Probing cellular processes by long-term live imaging—historic problems and current solutions. J. Cell Sci. 126, 3805–3815 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Chudakov, D.M., Matz, M.V., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Miyawaki, A. Proteins on the move: insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol. 12, 656–668 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Endele, M. & Schroeder, T. Molecular live cell bioimaging in stem cell research. Ann. NY Acad. Sci. 1266, 18–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Dean, K.M. & Palmer, A.E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schroeder, T. et al. Continuous long-term detection of live cell surface markers by “in culture” antibody staining. Protocol Exchange http://dx.doi.org/10.1038/protex.2011.205 (2011).

  58. Cranfill, P.J. et al. Quantitative assessment of fluorescent proteins. Nat. Methods 13, 557–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nelson, G. et al. Multi-parameter analysis of the kinetics of NF-κB signalling and transcription in single living cells. J. Cell Sci. 115, 1137–1148 (2002).

    CAS  PubMed  Google Scholar 

  60. Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. in Progress in Optics Vol. 57 (ed. Wolf, E.) 133–217 (Elsevier, 2012).

    Google Scholar 

  61. Albeanu, D.F., Soucy, E., Sato, T.F., Meister, M. & Murthy, V.N. LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One 3, e2146 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  63. Lang, M., Rudolf, F. & Stelling, J. Use of YouScope to implement systematic microscopy protocols. Curr. Protoc. Mol. Biol. 98, 14.21.1–14.21.23 (2012).

    Article  Google Scholar 

  64. Buggenthin, F. et al. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics 14, 297 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ali, R. et al. Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images. Mach. Vis. Appl. 23, 607–621 (2012).

    Article  Google Scholar 

  66. Perkel, J.M. The struggle with image glut. Nature 533, 131–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Amat, F. et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10, 1679–1696 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Bauch, A. et al. openBIS: a flexible framework for managing and analyzing complex data in biology research. BMC Bioinformatics 12, 468 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eliceiri, K.W. et al. Biological imaging software tools. Nat. Methods 9, 697–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    Article  PubMed  Google Scholar 

  72. Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).

    Article  Google Scholar 

  73. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Held, M. et al. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods 7, 747–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Arganda-Carreras et al. Trainable_Segmentation: release v3.1.2 http://dx.doi.org/10.5281/zenodo.59290 (2016).

  79. Sommer, C., Strähle, C., Köthe, U. & Hamprecht, F.A. ilastik: Interactive Learning and Segmentation Toolkit. in Eighth IEEE International Symposium on Biomedical Imaging (ISBI) 230–233 (2011).

  80. Zhou, J., Lamichhane, S., Sterne, G., Ye, B. & Peng, H. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics 14, 291 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III (eds. Navab, N., Hornegger, J., Wells, M.W. & Frangi, F.A.) 234–241 (Springer, 2015).

    Book  Google Scholar 

  82. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Costa, M.R., Bucholz, O., Schroeder, T. & Götz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19 (Suppl. 1), i135–i143 (2009).

    Article  PubMed  Google Scholar 

  84. Ravin, R. et al. Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Roshan, A. et al. Human keratinocytes have two interconvertible modes of proliferation. Nat. Cell Biol. 18, 145–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Hilsenbeck, O. et al. Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat. Biotechnol. 34, 703–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Stegmaier, J. et al. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36, 225–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Winter, M., Mankowski, W., Wait, E., Temple, S. & Cohen, A.R. LEVER: software tools for segmentation, tracking and lineaging of proliferating cells. Bioinformatics btw406 http://dx.doi.org/doi:10.1093/bioinformatics/btw406 (2016).

  90. Carpenter, A.E., Kamentsky, L. & Eliceiri, K.W. A call for bioimaging software usability. Nat. Methods 9, 666–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khakhutskyy, V. et al. in Information Technology in Bio- and Medical Informatics (eds. Bursa, M., Khuri, S. & Renda, M.E.) 15–29 (Springer, 2014).

    Book  Google Scholar 

  92. Fangerau, J. et al. in Visualization in Medicine and Life Sciences III: Towards Making an Impact (eds. Linsen, L., Hamann, B. & Hege, H.-C.) 287–307 (Springer, 2016).

    Book  Google Scholar 

  93. Pfeiffer, M. et al. Unsupervised lineage-based characterization of primate precursors reveals high proliferative and morphological diversity in the OSVZ. J. Comp. Neurol. 524, 535–563 (2016).

    Article  PubMed  Google Scholar 

  94. Cowan, R. & Staudte, R. The bifurcating autoregression model in cell lineage studies. Biometrics 42, 769–783 (1986).

    Article  CAS  PubMed  Google Scholar 

  95. Staudte, R.G. A bifurcating autoregression model for cell lineages with variable generation means. J. Theor. Biol. 156, 183–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Stewart, E.J., Madden, R., Paul, G. & Taddei, F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, e45 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. de Saporta, B., Gégout-Petit, A. & Marsalle, L. Statistical study of asymmetry in cell lineage data. Comput. Stat. Data Anal. 69, 15–39 (2014).

    Article  Google Scholar 

  98. Guyon, J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17, 1538–1569 (2007).

    Article  Google Scholar 

  99. Scherf, N. et al. On the symmetry of siblings: automated single-cell tracking to quantify the behavior of hematopoietic stem cells in a biomimetic setup. Exp. Hematol. 40, 119–130 (2012).

    Article  PubMed  Google Scholar 

  100. Strasser, M.K., Feigelman, J., Theis, F.J. & Marr, C. Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy. BMC Syst. Biol. 9, 61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Archie, J. et al. The Newick Standard http://evolution.genetics.washington.edu/phylip/newicktree.html (1986).

  102. Chechik, G. & Koller, D. Timing of gene expression responses to environmental changes. J. Comput. Biol. 16, 279–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Sivriver, J., Habib, N. & Friedman, N. An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinformatics 27, i392–i400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thomson, M. et al. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875–889 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Herberg, M. et al. Dissecting mechanisms of mouse embryonic stem cells heterogeneity through a model-based analysis of transcription factor dynamics. J. R. Soc. Interface 13, 20160167 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Du, Z., Santella, A., He, F., Tiongson, M. & Bao, Z. De novo inference of systems-level mechanistic models of development from live-imaging-based phenotype analysis. Cell 156, 359–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Du, Z. et al. The regulatory landscape of lineage differentiation in a metazoan embryo. Dev. Cell 34, 592–607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P.K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Cohen, A.R., Gomes, F.L.A.F., Roysam, B. & Cayouette, M. Computational prediction of neural progenitor cell fates. Nat. Methods 7, 213–218 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation to T.S. T.S., S.S. and O.H. acknowledge financial support for this project from SystemsX.ch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Schroeder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skylaki, S., Hilsenbeck, O. & Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol 34, 1137–1144 (2016). https://doi.org/10.1038/nbt.3713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing