Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens

Abstract

Chronic stress is a strong diathesis for depression in humans and is used to generate animal models of depression. It commonly leads to several major symptoms of depression, including dysregulated feeding behaviour, anhedonia and behavioural despair. Although hypotheses defining the neural pathophysiology of depression have been proposed, the critical synaptic adaptations in key brain circuits that mediate stress-induced depressive symptoms remain poorly understood. Here we show that chronic stress in mice decreases the strength of excitatory synapses on D1 dopamine receptor-expressing nucleus accumbens medium spiny neurons owing to activation of the melanocortin 4 receptor. Stress-elicited increases in behavioural measurements of anhedonia, but not increases in measurements of behavioural despair, are prevented by blocking these melanocortin 4 receptor-mediated synaptic changes in vivo. These results establish that stress-elicited anhedonia requires a neuropeptide-triggered, cell-type-specific synaptic adaptation in the nucleus accumbens and that distinct circuit adaptations mediate other major symptoms of stress-elicited depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-MSH modifies excitatory synapses on NAc D1-MSNs.
Figure 2: Chronic-restraint stress modifies excitatory synapses on NAc D1-MSNs.
Figure 3: Knockdown of NAc MC4R prevents stress-induced weight loss and synaptic changes.
Figure 4: Chronic stress induces LTD in D1-MSNs.
Figure 5: MC4R activation and LTD in the NAc are required for stress-induced anhedonia.
Figure 6: MC4R activation and LTD in the NAc are required for stress-induced decreases in cocaine CPP.

Similar content being viewed by others

References

  1. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nature Neurosci. 8, 571–578 (2005)

    Article  CAS  Google Scholar 

  2. Gao, Q. & Horvath, T. L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30, 367–398 (2007)

    Article  CAS  Google Scholar 

  3. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002)

    Article  CAS  Google Scholar 

  5. Volkow, N. D., Wang, G. J. & Baler, R. D. Reward, dopamine and the control of food intake: implications for obesity. Tr. Cogn. Sci. 15, 37–46 (2011)

    Article  CAS  Google Scholar 

  6. Nestler, E. J. & Carlezon, W. A., Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006)

    Article  CAS  Google Scholar 

  7. Liu, J. et al. The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148, 5531–5540 (2007)

    Article  CAS  Google Scholar 

  8. Hsu, R. et al. Blockade of melanocortin transmission inhibits cocaine reward. Eur. J. Neurosci. 21, 2233–2242 (2005)

    Article  Google Scholar 

  9. Chaki, S., Ogawa, S., Toda, Y., Funakoshi, T. & Okuyama, S. Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur. J. Pharmacol. 474, 95–101 (2003)

    Article  CAS  Google Scholar 

  10. Chaki, S. & Okuyama, S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides 26, 1952–1964 (2005)

    Article  CAS  Google Scholar 

  11. Shuen, J. A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008)

    Article  CAS  Google Scholar 

  12. Kreitzer, A. C. & Malenka, R. C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008)

    Article  CAS  Google Scholar 

  13. Grueter, B. A., Brasnjo, G. & Malenka, R. C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nature Neurosci. 13, 1519–1525 (2010)

    Article  CAS  Google Scholar 

  14. Lobo, M. K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896–907 (2010)

    Article  CAS  Google Scholar 

  16. Kauer, J. A. & Malenka, R. C. Synaptic plasticity and addiction. Nature Rev. Neurosci. 8, 844–858 (2007)

    Article  CAS  Google Scholar 

  17. Conrad, K. L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Isaac, J. T., Ashby, M. C. & McBain, C. J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007)

    Article  CAS  Google Scholar 

  19. Brog, J. S., Salyapongse, A., Deutch, A. Y. & Zahm, D. S. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 255–278 (1993)

    Article  CAS  Google Scholar 

  20. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    Article  CAS  Google Scholar 

  21. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007)

    Article  CAS  Google Scholar 

  23. Lee, S. H., Liu, L., Wang, Y. T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002)

    Article  CAS  Google Scholar 

  24. Yang, Y. Structure, function and regulation of the melanocortin receptors. Eur. J. Pharmacol. 660, 125–130 (2011)

    Article  CAS  Google Scholar 

  25. Woolfrey, K. M. et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nature Neurosci. 12, 1275–1284 (2009)

    Article  CAS  Google Scholar 

  26. Bos, J. L. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci. 31, 680–686 (2006)

    Article  CAS  Google Scholar 

  27. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosci. 13, 1161–1169 (2010)

    Article  CAS  Google Scholar 

  28. Porsolt, R. D., Brossard, G., Hautbois, C. & Roux, S. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. 14, 10A.1–8.10A.10 (2001)

    Google Scholar 

  29. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007)

    Article  CAS  Google Scholar 

  30. Bardo, M. T. & Bevins, R. A. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153, 31–43 (2000)

    Article  CAS  Google Scholar 

  31. Cunningham, C. L., Gremel, C. M. & Groblewski, P. A. Drug-induced conditioned place preference and aversion in mice. Nature Protocols 1, 1662–1670 (2006)

    Article  CAS  Google Scholar 

  32. Kasanetz, F. et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328, 1709–1712 (2010)

    Article  ADS  CAS  Google Scholar 

  33. Pascoli, V., Turiault, M. & Luscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2011)

    Article  ADS  Google Scholar 

  34. Ferguson, S. M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nature Neurosci. 14, 22–24 (2011)

    Article  CAS  Google Scholar 

  35. Heusner, C. L. & Palmiter, R. D. Expression of mutant NMDA receptors in dopamine D1 receptor-containing cells prevents cocaine sensitization and decreases cocaine preference. J. Neurosci. 25, 6651–6657 (2005)

    Article  CAS  Google Scholar 

  36. Durieux, P. F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature Neurosci. 12, 393–395 (2009)

    Article  CAS  Google Scholar 

  37. Covington, H. E., III et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30, 16082–16090 (2010)

    Article  CAS  Google Scholar 

  38. Berridge, K. C., Robinson, T. E. & Aldridge, J. W. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9, 65–73 (2009)

    Article  CAS  Google Scholar 

  39. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011)

    Article  ADS  CAS  Google Scholar 

  40. Thomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nature Neurosci. 4, 1217–1223 (2001)

    Article  CAS  Google Scholar 

  41. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008)

    Article  CAS  Google Scholar 

  42. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008)

    Article  CAS  Google Scholar 

  43. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009)

    Article  ADS  CAS  Google Scholar 

  44. Mebatsion, T., Konig, M. & Conzelmann, K. K. Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84, 941–951 (1996)

    Article  CAS  Google Scholar 

  45. Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nature Protocols 5, 595–606 (2010)

    Article  CAS  Google Scholar 

  46. Wolfart, J., Neuhoff, H., Franz, O. & Roeper, J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 21, 3443–3456 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kauer, D. Lyons and members of the Malenka laboratory for comments. The rabies virus complementary DNA plasmid and viral component-expressing plasmids were gifts from K. Conzelmann and I. Wickersham. BAC transgenic mice were provided by N. Calakos. BHK-B19G cells were a gift from E. Callaway. The AAVs used in this study were produced by the Stanford Neuroscience Gene Vector and Virus Core. The AAV-DJ helper plasmid was a gift from M. Kay. B.K.L. is supported by a Davis Foundation Postdoctoral Fellowship in Eating Disorders Research. We acknowledge funding from the National Institutes of Health (R.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and results were interpreted by B.K.L. and R.C.M. with assistance from K.W.H., B.A.G. and P.E.R. Virus injections and rabies virus production were performed by B.K.L. and K.W.H. All experiments were performed and analysed by B.K.L. with assistance from B.A.G. for electrophysiology experiments and P.E.R. for CPP assays. The manuscript was written by B.K.L. and R.C.M. and edited by all authors.

Corresponding author

Correspondence to Robert C. Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9. (PDF 989 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, B., Huang, K., Grueter, B. et al. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012). https://doi.org/10.1038/nature11160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing