Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modular regulatory principles of large non-coding RNAs

Abstract

It is clear that RNA has a diverse set of functions and is more than just a messenger between gene and protein. The mammalian genome is extensively transcribed, giving rise to thousands of non-coding transcripts. Whether all of these transcripts are functional is debated, but it is evident that there are many functional large non-coding RNAs (ncRNAs). Recent studies have begun to explore the functional diversity and mechanistic role of these large ncRNAs. Here we synthesize these studies to provide an emerging model whereby large ncRNAs might achieve regulatory specificity through modularity, assembling diverse combinations of proteins and possibly RNA and DNA interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layering of genomic regions.
Figure 2: Classification of ncRNA function.
Figure 3: Modular principles of large ncRNA genes.

Similar content being viewed by others

References

  1. Warner, J. R., Soeiro, R., Birnboim, H. C., Girard, M. & Darnell, J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J. Mol. Biol. 19, 349–361 (1966).

    CAS  PubMed  Google Scholar 

  2. Salditt-Georgieff, M., Harpold, M. M., Wilson, M. C. & Darnell, J. E., Jr. Large heterogeneous nuclear ribonucleic acid has three times as many 5′ caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol. Cell. Biol. 1, 179–187 (1981). This paper demonstrates an abundant class of RNA species that do not enter polyribosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinberg, R. A. & Penman, S. Small molecular weight monodisperse nuclear RNA. J. Mol. Biol. 38, 289–304 (1968).

    CAS  PubMed  Google Scholar 

  4. Zieve, G. & Penman, S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8, 19–31 (1976).

    CAS  PubMed  Google Scholar 

  5. Gesteland, R. F., Cech, T. & Atkins, J. F. The RNA World : The Nature of Modern RNA Suggests a Prebiotic RNA World. 3rd edn (Cold Spring Harbor Laboratory Press, 2006).

    Google Scholar 

  6. Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nature Rev. Genet. 2, 919–929 (2001).

    CAS  PubMed  Google Scholar 

  7. Pachnis, V., Brannan, C. I. & Tilghman, S. M. The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J. 7, 673–681 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28–36 (1990). This paper was the first report of a large ncRNA showing that the H19 transcript lacked conserved ORFs and did not make a protein product in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    ADS  CAS  PubMed  Google Scholar 

  10. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    ADS  CAS  PubMed  Google Scholar 

  11. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    ADS  CAS  PubMed  Google Scholar 

  12. Young, T. L., Matsuda, T. & Cepko, C. L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 15, 501–512 (2005).

    CAS  PubMed  Google Scholar 

  13. Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    ADS  CAS  PubMed  Google Scholar 

  14. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). This paper describes the large-scale cDNA sequencing efforts in the mouse genome and reveals many thousands of non-coding transcripts.

    ADS  CAS  PubMed  Google Scholar 

  16. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    ADS  CAS  PubMed  Google Scholar 

  17. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).

    ADS  CAS  PubMed  Google Scholar 

  18. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    ADS  CAS  PubMed  Google Scholar 

  19. Rinn, J. L. et al. The transcriptional activity of human Chromosome 22. Genes Dev. 17, 529–540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    ADS  CAS  PubMed  Google Scholar 

  21. Ebisuya, M., Yamamoto, T., Nakajima, M. & Nishida, E. Ripples from neighbouring transcription. Nature Cell Biol. 10, 1106–1113 (2008).

    CAS  PubMed  Google Scholar 

  22. Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nature Struct. Mol. Biol. 14, 103–105 (2007).

    CAS  Google Scholar 

  23. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009). This paper applied a chromatin signature to identify lincRNAs and used a guilt-by-association approach to classify their likely functions in diverse biological processes.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet. 43, 621–629 (2011).

    CAS  PubMed  Google Scholar 

  28. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  31. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnol. 28, 503–510 (2010).

    CAS  Google Scholar 

  32. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 105, 716–721 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Santa, F. et al. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ravasi, T. et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16, 11–19 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17, 556–565 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572–578 (2009).

    CAS  PubMed  Google Scholar 

  39. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  41. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  42. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genet. 42, 1113–1117 (2010).

    CAS  PubMed  Google Scholar 

  48. Dinger, M. E., Pang, K. C., Mercer, T. R. & Mattick, J. S. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput. Biol. 4, e1000176 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    CAS  PubMed  Google Scholar 

  50. Lin, M. F., Deoras, A. N., Rasmussen, M. D. & Kellis, M. Performance and scalability of discriminative metrics for comparative gene identification in 12 Drosophila genomes. PLoS Comput. Biol. 4, e1000067 (2008).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. Lin, M. F., Jungreis, I. & Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27, i275–i282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).

    CAS  PubMed  Google Scholar 

  53. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Galindo, M. I., Pueyo, J. I., Fouix, S., Bishop, S. A. & Couso, J. P. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 5, e106 (2007). This paper demonstrates the existence of functional small peptides within a presumed 'non-coding' transcript through ORF conservation, in vivo protein identification and functional analysis.

    PubMed  PubMed Central  Google Scholar 

  55. Kondo, T. et al. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 329, 336–339 (2010).

    ADS  CAS  PubMed  Google Scholar 

  56. Jiao, Y. & Meyerowitz, E. M. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol. Syst. Biol. 6, 419 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Li, Y. M. et al. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J. Biol. Chem. 273, 28247–28252 (1998).

    CAS  PubMed  Google Scholar 

  58. Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA 104, 19428–19433 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kastenmayer, J. P. et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 16, 365–373 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hanada, K., Zhang, X., Borevitz, J. O., Li, W. H. & Shiu, S. H. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17, 632–640 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mattick, J. S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010). This paper identified multiple protein-interaction domains within HOTAIR that together allowed it to carry out its function, which demonstrated that a large ncRNA can act as a molecular scaffold.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA 101, 10024–10029 (2004). This paper demonstrated that telomerase RNA can bridge proteins by showing that protein interaction domains can be swapped and spacer regions deleted with minimal impact on the function of the RNA.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Korostelev, A. & Noller, H. F. The ribosome in focus: new structures bring new insights. Trends Biochem. Sci. 32, 434–441 (2007).

    CAS  PubMed  Google Scholar 

  68. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    ADS  CAS  PubMed  Google Scholar 

  69. Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429, 571–574 (2004).

    ADS  CAS  PubMed  Google Scholar 

  70. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, J. T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831–1842 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ponjavic, J., Oliver, P. L., Lunter, G. & Ponting, C. P. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 5, e1000617 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Koerner, M. V., Pauler, F. M., Huang, R. & Barlow, D. P. The function of non-coding RNAs in genomic imprinting. Development 136, 1771–1783 (2009).

    CAS  PubMed  Google Scholar 

  75. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  76. Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell 43, 1040–1046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Koziol, M. J. & Rinn, J. L. RNA traffic control of chromatin complexes. Curr. Opin. Genet. Dev. 20, 142–148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet. 30, 329–334 (2002).

    PubMed  Google Scholar 

  80. Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560–2569 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet. 30, 167–174 (2002). This paper reported the generation of deletion mutants across the Xist locus and identified the discrete domains responsible for the silencing and localization roles of the RNA.

    CAS  PubMed  Google Scholar 

  82. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell 44, 667–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Simon, M. D. et al. The genomic binding-sites of a non-coding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002).

    CAS  PubMed  Google Scholar 

  86. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    ADS  CAS  PubMed  Google Scholar 

  87. Zhao, J. et al. Genome-wide identification of Polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24, 2615–2620 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    CAS  PubMed  Google Scholar 

  94. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    ADS  CAS  PubMed  Google Scholar 

  95. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    CAS  PubMed  Google Scholar 

  96. Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K. & Nakagawa, S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).

    CAS  PubMed  Google Scholar 

  98. Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  100. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Cabili, J. Engreitz, M. Garber, P. McDonel and A. Pauli for their reading and suggestions; T. Cech for comments and suggestions; E. Lander for helpful discussions and ideas; and S. Knemeyer and L. Gaffney for assistance with figures in this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitchell Guttman or John L. Rinn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttman, M., Rinn, J. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012). https://doi.org/10.1038/nature10887

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10887

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing