Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila

Abstract

Discriminating among sensory stimuli is critical for animal survival. This discrimination is particularly essential when evaluating whether a stimulus is noxious or innocuous. From insects to humans, transient receptor potential (TRP) channels are key transducers of thermal, chemical and other sensory cues1,2. Many TRPs are multimodal receptors that respond to diverse stimuli1,2,3, but how animals distinguish sensory inputs activating the same TRP is largely unknown. Here we determine how stimuli activating Drosophila TRPA1 are discriminated. Although Drosophila TRPA1 responds to both noxious chemicals4 and innocuous warming5, we find that TRPA1-expressing chemosensory neurons respond to chemicals but not warmth, a specificity conferred by a chemosensory-specific TRPA1 isoform with reduced thermosensitivity compared to the previously described isoform. At the molecular level, this reduction results from a unique region that robustly reduces the channel’s thermosensitivity. Cell-type segregation of TRPA1 activity is critical: when the thermosensory isoform is expressed in chemosensors, flies respond to innocuous warming with regurgitation, a nocifensive response. TRPA1 isoform diversity is conserved in malaria mosquitoes, indicating that similar mechanisms may allow discrimination of host-derived warmth—an attractant—from chemical repellents. These findings indicate that reducing thermosensitivity can be critical for TRP channel functional diversification, facilitating their use in contexts in which thermal sensitivity can be maladaptive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPA1-dependent gustatory neurons do not respond to heat.
Figure 2: TRPA1 isoform diversity yields tissue-specific channels with different thermal sensitivities.
Figure 3: TRPA1 isoform diversity determines sensory specificity of gustatory neurons.
Figure 4: Regulation of insect TRPA1 thermosensitivity by alternative N termini.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Data deposits

TRPA1(A) sequence is deposited in GenBank under accession number JQ015263.

References

  1. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006)

    Article  CAS  Google Scholar 

  2. Wu, L. J., Sweet, T. B. & Clapham, D. E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62, 381–404 (2010)

    Article  CAS  Google Scholar 

  3. Daniels, R. L. & McKemy, D. D. Mice left out in the cold: commentary on the phenotype of TRPM8-nulls. Mol. Pain 3, 23 (2007)

    Article  Google Scholar 

  4. Kang, K. et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597–600 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila . Nature 454, 217–220 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nature Rev. Drug Discov. 8, 55–68 (2009)

    Article  CAS  Google Scholar 

  7. Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature 423, 822–823 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Cohet, Y. Epigenetic influences on the lifespan of the Drosophila: existence of an optimal growth temperature for adult longevity. Exp. Gerontol. 10, 181–184 (1975)

    Article  CAS  Google Scholar 

  9. Hodgson, E. S., Lettvin, J. Y. & Roeder, K. D. Physiology of a primary chemoreceptor unit. Science 122, 417–418 (1955)

    Article  CAS  Google Scholar 

  10. Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila . Neuron 69, 258–272 (2011)

    Article  CAS  Google Scholar 

  11. von Philipsborn, A. C. et al. Neuronal control of Drosophila courtship song. Neuron 69, 509–522 (2011)

    Article  CAS  Google Scholar 

  12. Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster . Nature 471, 473–479 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Vyklicky, L. et al. Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J. Physiol. (Lond.) 517, 181–192 (1999)

    Article  CAS  Google Scholar 

  14. Tracey, W. D., Jr, Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003)

    Article  CAS  Google Scholar 

  15. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Gracheva, E. O. et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476, 88–91 (2011)

    Article  CAS  Google Scholar 

  18. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006)

    Article  CAS  Google Scholar 

  19. Lu, G., Henderson, D., Liu, L., Reinhart, P. H. & Simon, S. A. TRPV1b, a functional human vanilloid receptor splice variant. Mol. Pharmacol. 67, 1119–1127 (2005)

    Article  CAS  Google Scholar 

  20. Vos, M. H. et al. TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells. J. Neurochem. 99, 1088–1102 (2006)

    Article  CAS  Google Scholar 

  21. Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl Acad. Sci. USA 101, 15494–15499 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Liu, B., Hui, K. & Qin, F. Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys. J. 85, 2988–3006 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Wang, G. et al. Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae. Eur. J. Neurosci. 30, 967–974 (2009)

    Article  Google Scholar 

  24. Maekawa, E. et al. The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior. Parasit. Vectors 4, 10 (2011)

    Article  Google Scholar 

  25. Uchida, K. & Tominaga, M. The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr. J. 10.1507/endocrj.EJ11-0130 (2011)

  26. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nature Neurosci. 11, 1007–1013 (2008)

    Article  CAS  Google Scholar 

  27. Grandl, J. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nature Neurosci. 13, 708–714 (2010)

    Article  CAS  Google Scholar 

  28. Yang, F., Cui, Y., Wang, K. & Zheng, J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl Acad. Sci. USA 107, 7083–7088 (2011)

    Article  ADS  Google Scholar 

  29. Yao, J., Liu, B. & Qin, F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 11109–11114 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004)

    Article  CAS  Google Scholar 

  31. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483 (2008)

    Article  CAS  Google Scholar 

  32. Wieczorek, H. & Wolff, G. The labellar sugar receptor of Drosophila . J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 164, 825–834 (1989)

    Article  Google Scholar 

  33. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the P.A.G. laboratory, H. Garrity, L. Griffith, L. Huang, J. Rodriguez and M. Rosbash for helpful comments, and F. Marion-Poll and A. Dahanukar for guidance with tip-recording. This work was supported by grants from the National Science Foundation (IOS-1025307), National Institute of Mental Health (EUREKA R01 MH094721) and National Institute of Neurological Disorders and Stroke (NINDS) (PO1 NS044232) to P.A.G., a National Research Service Award from NINDS to V.C.P. (F31 NS071897-02) and the Boston College DeLuca Professorship to M.A.T.M.

Author information

Authors and Affiliations

Authors

Contributions

K.K., V.C.P. and P.A.G. designed experiments. K.K. performed molecular biology, genetics and oocyte physiology. V.C.P. performed genetics and sensory neuron electrophysiology. E.C.C. performed genetics and behavioural experiments. A.M.D. performed behavioural experiments. L.N. performed immunohistochemistry. A.M.J., K.R. and M.A.T.M. grew and harvested mosquitoes. P.A.G. performed bioinformatics. K.K., V.C.P. and P.A.G. wrote the paper.

Corresponding author

Correspondence to Paul A. Garrity.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends. (PDF 1266 kb)

Supplementary Movie 1

This movie 'warmth triggered regurgitation in a TRPA1(B) rescue fly' shows a Gr66a>TRPA1(B); TrpA1ins mutant rescue animal being heated from room temperature (~23˚C) to ~32˚C over 30 seconds. The fly responds to warming by initiating proboscis movements and eventually regurgitates previously ingested liquid. (MOV 8091 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K., Panzano, V., Chang, E. et al. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481, 76–80 (2012). https://doi.org/10.1038/nature10715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10715

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing