Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene expression atlas of the central nervous system based on bacterial artificial chromosomes

Abstract

The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Chat from different BAC constructs.
Figure 2: Cell lineage revealed by expression data from reporter gene analysis in BAC transgenic mice.
Figure 3: Predicting developmental functions for specific genes on the basis of expression data in BAC transgenic mice.
Figure 4: Genesis and migration of cortical interneurons is revealed with Lhx6 BAC transgenic mice.
Figure 5: Expression of Pde1c reveals a novel and distinct migratory pathway in developing brain.
Figure 6: Layer-specific gene expression in the developing cerebral cortex.
Figure 7: Cell-specific EGFP marker expression in the adult striatum of BAC transgenic mice.

Similar content being viewed by others

References

  1. Ramon y Cajal, S. Histology of the Nervous System (Oxford Univ. Press, New York, 1911)

    Google Scholar 

  2. Heintz, N. BAC to the future: the use of BAC transgenic mice for neuroscience research. Nature Rev. Neurosci. 2, 861–870 (2001)

    Article  CAS  Google Scholar 

  3. Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859–865 (1997)

    Article  CAS  Google Scholar 

  4. Gong, S., Yang, X., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12, 1992–1998 (2002)

    Article  CAS  Google Scholar 

  5. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001)

    Article  CAS  Google Scholar 

  6. Gottlieb, S. et al. The DiGeorge syndrome minimal critical region contains a goosecoid-like (GSCL) homeobox gene that is expressed early in human development. Am. J. Hum. Genet. 60, 1194–1201 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gottlieb, S., Hanes, S. D., Golden, J. A., Oakey, R. J. & Budarf, M. L. Goosecoid-like, a gene deleted in DiGeorge and velocardiofacial syndromes, recognizes DNA with a bicoid-like specificity and is expressed in the developing mouse brain. Hum. Mol. Genet. 7, 1497–1505 (1998)

    Article  CAS  Google Scholar 

  8. Valjakka, A. et al. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 47, 171–184 (1998)

    Article  CAS  Google Scholar 

  9. Emanuel, B. S., McDonald-McGinn, D., Saitta, S. C. & Zackai, E. H. The 22q11.2 deletion syndrome. Adv. Pediatr. 48, 39–73 (2001)

    CAS  PubMed  Google Scholar 

  10. Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000)

    Article  CAS  Google Scholar 

  11. Nakamura, F., Kalb, R. G. & Strittmatter, S. M. Molecular basis of semaphorin-mediated axon guidance. J. Neurobiol. 44, 219–229 (2000)

    Article  CAS  Google Scholar 

  12. Chen, H., He, Z. & Tessier-Lavigne, M. Axon guidance mechanisms: semaphorins as simultaneous repellents and anti-repellents. Nature Neurosci. 1, 436–439 (1998)

    Article  CAS  Google Scholar 

  13. Takahashi, T., Nakamura, F., Jin, Z., Kalb, R. G. & Strittmatter, S. M. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nature Neurosci. 1, 487–493 (1998)

    Article  CAS  Google Scholar 

  14. Baird, D. H., Hatten, M. E. & Mason, C. A. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro. J. Neurosci. 12, 619–634 (1992)

    Article  CAS  Google Scholar 

  15. Walz, A., Rodriguez, I. & Mombaerts, P. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J. Neurosci. 22, 4025–4035 (2002)

    Article  CAS  Google Scholar 

  16. Sachs, G. M. & Schneider, G. E. The morphology of optic tract axons arborizing in the superior colliculus of the hamster. J. Comp. Neurol. 230, 155–167 (1984)

    Article  CAS  Google Scholar 

  17. Sachs, G. M., Jacobson, M. & Caviness, V. S. Jr. Postnatal changes in arborization patterns of murine retinocollicular axons. J. Comp. Neurol. 246, 395–408 (1986)

    Article  CAS  Google Scholar 

  18. Edwards, M. A., Caviness, V. S. Jr & Schneider, G. E. Development of cell and fiber lamination in the mouse superior colliculus. J. Comp. Neurol. 248, 395–409 (1986)

    Article  CAS  Google Scholar 

  19. Edwards, M. A., Schneider, G. E. & Caviness, V. S. Jr. Development of the crossed retinocollicular projection in the mouse. J. Comp. Neurol. 248, 410–421 (1986)

    Article  CAS  Google Scholar 

  20. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000)

    Article  CAS  Google Scholar 

  21. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000)

    Article  CAS  Google Scholar 

  22. Yates, P. A., Roskies, A. L., McLaughlin, T. & O'Leary, D. D. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J. Neurosci. 21, 8548–8563 (2001)

    Article  CAS  Google Scholar 

  23. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. Interneuron migration from basal forebrain to neocortex dependence on Dlx genes. Science 278, 474–476 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Marin, O. & Rubenstein, J. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001)

    Article  CAS  Google Scholar 

  25. Hatten, M. New directions in neuronal migration. Science 297, 1660–1663 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Lavdas, A. A., Grigoriou, M., Pchnis, V. & Rubernstein, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999)

    Article  CAS  Google Scholar 

  27. Ross, C., MacCumber, M., Glatt, C. & Snyder, S. Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc. Natl Acad. Sci. USA 86, 2923–2927 (1989)

    Article  ADS  CAS  Google Scholar 

  28. Rybalkin, S., Rybalkina, I., Beavo, J. & Bornfeldt, K. Cyclic nucleotide phosphodiesterase 1C promotes human arterial smooth muscle proliferation. Circ. Res. 90, 151–157 (2002)

    Article  CAS  Google Scholar 

  29. Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998)

    Article  CAS  Google Scholar 

  30. Derer, P. & Derer, M. Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 36, 839–856 (1990)

    Article  CAS  Google Scholar 

  31. D'Arcangelo, G. et al. Reelin is a secreted protein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997)

    Article  CAS  Google Scholar 

  32. Wang, X., Zhong, P. & Yan, Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J. Neurosci. 22, 9185–9193 (2002)

    Article  CAS  Google Scholar 

  33. Frantz, G., Weimann, J., Levin, M. & McConnell, S. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994)

    Article  CAS  Google Scholar 

  34. Weimann, J. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999)

    Article  CAS  Google Scholar 

  35. Nicola, S., Surmeier, J. & Malenka, R. Dopamine modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000)

    Article  CAS  Google Scholar 

  36. Le Moine, C. & Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 355, 418–426 (1995)

    Article  CAS  Google Scholar 

  37. Surmeier, J., Song, W.-J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996)

    Article  CAS  Google Scholar 

  38. Hersh, S. et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J. Neurosci. 15, 5222–5237 (1995)

    Article  Google Scholar 

  39. Bernard, V., Levey, A. & Bloch, B. Regulation of the subcellular distribution of M4 muscarinic acetyl choline receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation. J. Neurosci. 19, 10237–10249 (1999)

    Article  CAS  Google Scholar 

  40. Gerfen, C. R. & Young, W. S. III Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 460, 161–167 (1988)

    Article  CAS  Google Scholar 

  41. Lee, E. C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001)

    Article  CAS  Google Scholar 

  42. Muyrers, J. P., Zhang, Y., Testa, G. & Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999)

    Article  CAS  Google Scholar 

  43. Metcalf, W. W. et al. Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996)

    Article  CAS  Google Scholar 

  44. Paxinos, G. & Franklin, K. The Mouse Brain in Stereotaxic Coordinates 132 (Academic, San Diego, 2001)

    Google Scholar 

  45. Valverde, F. Golgi Atlas of the Postnatal Mouse Brain (Springer, Vienna, 1998)

    Book  Google Scholar 

  46. Schambra, U., Lauder, J. & Silver, J. Atlas of the Prenatal Mouse Brain (Academic, San Diego, 1992)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of GENSAT who generated this data, including C. Grevstad, A. Sung, P. Dyer, H. Zhu, S. M. Ehta, C. Wang, T. Allanson, C. Madden, Y. Huang, H. Sherman and H. Feng; to N. Adams who helped to write the macros for the image-acquisition system and who provided advice on histological methods; to D. Birchfield and B. Dittmer-Roche who helped to write the database programs; and to J. Walsh who helped with the preparation of the manuscript. The GENSAT project is supported by grants from the National Institutes of Health. N.H. and A.J. are investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary E. Hatten or Nathaniel Heintz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Zheng, C., Doughty, M. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003). https://doi.org/10.1038/nature02033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02033

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing