Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organization of cell assemblies in the hippocampus

Abstract

Neurons can produce action potentials with high temporal precision1. A fundamental issue is whether, and how, this capability is used in information processing. According to the ‘cell assembly’ hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms2,3,4. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation5,6,7,8. The time window in which spike times are best predicted from simultaneous peer activity is 10–30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons9, the period of the hippocampal gamma oscillation10 and the time window for synaptic plasticity11, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell assembly activity in a population.
Figure 2: Spike train prediction method.
Figure 3: Spike timing is predictable from peer activity.
Figure 4: Assembly structure is not fully accounted for by spatially dependent phase modulation.

Similar content being viewed by others

References

  1. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949)

    Google Scholar 

  3. Freiwald, W. A., Kreiter, A. K. & Singer, W. Synchronization and assembly formation in the visual cortex. Prog. Brain Res. 130, 111–140 (2001)

    Article  CAS  Google Scholar 

  4. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001)

    Article  CAS  Google Scholar 

  5. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993)

    Article  CAS  Google Scholar 

  6. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    Article  CAS  Google Scholar 

  7. Harris, K. D. et al. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417, 738–741 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417, 741–746 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992)

    Article  CAS  Google Scholar 

  10. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003)

    Article  CAS  Google Scholar 

  11. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997)

    Article  CAS  Google Scholar 

  12. Reinagel, P. & Reid, R. C. Precise firing events are conserved across neurons. J. Neurosci. 22, 6837–6841 (2002)

    Article  CAS  Google Scholar 

  13. Kara, P., Reinagel, P. & Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000)

    Article  CAS  Google Scholar 

  14. Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998)

    Article  CAS  Google Scholar 

  15. Fenton, A. A. & Muller, R. U. Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc. Natl Acad. Sci. USA 95, 3182–3187 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)

    Article  CAS  Google Scholar 

  17. Lisman, J. E. & Idiart, M. A. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Redish, A. D. et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J. Neurosci. 21, RC134 [online] 〈http://www.jneurosci.org/cgi/content/full/21/5/RC134〉 (2001)

    Article  CAS  Google Scholar 

  19. Hirase, H., Leinekugel, X., Csicsvari, J., Czurko, A. & Buzsáki, G. Behavior-dependent states of the hippocampal network affect functional clustering of neurons. J. Neurosci. 21, RC145 [online] 〈http://www.jneurosci.org/cgi/content/full/21/10/RC145〉 (2001)

    Article  CAS  Google Scholar 

  20. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978)

    Google Scholar 

  21. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C. & Wilson, M. A. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998)

    Article  CAS  Google Scholar 

  23. Cox, D. R. & Isham, V. Point Processes (Chapman and Hall, London, 1980)

    MATH  Google Scholar 

  24. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999)

    Article  CAS  Google Scholar 

  25. Jensen, O. & Lisman, J. E. Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J. Neurophysiol. 83, 2602–2609 (2000)

    Article  CAS  Google Scholar 

  26. deCharms, R. C. & Zador, A. Neural representation and the cortical code. Annu. Rev. Neurosci. 23, 613–647 (2000)

    Article  CAS  Google Scholar 

  27. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000)

    Article  CAS  Google Scholar 

  29. Quirk, M. C. & Wilson, M. A. Interaction between spike waveform classification and temporal sequence detection. J. Neurosci. Methods 94, 41–52 (1999)

    Article  CAS  Google Scholar 

  30. Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. E. Lisman, D. L. Buhl, S. M. Montgomery, P. E. Bartho and I. Creese for comments on the manuscript. This work was supported by grants from the National Institutes of Health

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, K., Csicsvari, J., Hirase, H. et al. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003). https://doi.org/10.1038/nature01834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01834

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing