Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subsecond dopamine release promotes cocaine seeking

An Erratum to this article was published on 22 May 2003

Abstract

The dopamine-containing projection from the ventral tegmental area of the midbrain to the nucleus accumbens is critically involved in mediating the reinforcing properties of cocaine1,2. Although neurons in this area respond to rewards on a subsecond timescale3,4, neurochemical studies have only addressed the role of dopamine in drug addiction by examining changes in the tonic (minute-to-minute) levels of extracellular dopamine5,6,7,8,9. To investigate the role of phasic (subsecond) dopamine signalling10, we measured dopamine every 100 ms in the nucleus accumbens using electrochemical technology11. Rapid changes in extracellular dopamine concentration were observed at key aspects of drug-taking behaviour in rats. Before lever presses for cocaine, there was an increase in dopamine that coincided with the initiation of drug-seeking behaviours. Notably, these behaviours could be reproduced by electrically evoking dopamine release on this timescale. After lever presses, there were further increases in dopamine concentration at the concurrent presentation of cocaine-related cues. These cues alone also elicited similar, rapid dopamine signalling, but only in animals where they had previously been paired to cocaine delivery. These findings reveal an unprecedented role for dopamine in the regulation of drug taking in real time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopamine release in the nucleus accumbens evoked by a stimulus train (24 pulses, 60 Hz, 120 µA; represented by the grey bar).
Figure 2: Rapid increase in extracellular dopamine in the nucleus accumbens relative to the lever-press response for cocaine.
Figure 3: Rapid increase in extracellular dopamine after probe presentation of cocaine-associated stimuli.
Figure 4: Effect of electrically evoked dopamine release on lever-press responding for cocaine.

Similar content being viewed by others

References

  1. Wise, R. A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  2. Koob, G. F. & Nestler, E. J. The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497 (1997)

    Article  CAS  PubMed Central  Google Scholar 

  3. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  4. Hyland, B. I., Reynolds, J. N. J., Hay, J., Perk, C. G. & Miller, R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–492 (2002)

    Article  CAS  PubMed Central  Google Scholar 

  5. Pettit, H. O. & Justice, J. B. Jr Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav. 34, 899–904 (1989)

    Article  CAS  PubMed Central  Google Scholar 

  6. Wise, R. A. et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10–20 (1995)

    Article  CAS  PubMed Central  Google Scholar 

  7. Di Chiara, G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 375, 13–30 (1999)

    Article  CAS  PubMed Central  Google Scholar 

  8. Bradberry, C. W., Barrett-Larimore, R. L., Jatlow, P. & Rubino, S. R. Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J. Neurosci. 20, 3874–3883 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  9. Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W. & Everitt, B. J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20, 7489–7495 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  10. Wightman, R. M. & Robinson, D. L. Transient changes in mesolimbic dopamine and their association with ‘reward’. J. Neurochem. 82, 721–735 (2002)

    Article  CAS  PubMed Central  Google Scholar 

  11. Stamford, J. A. & Justice, J. B. Jr Probing brain chemistry. Anal. Chem. 68, 359A–363A (1996)

    Article  CAS  PubMed Central  Google Scholar 

  12. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  CAS  Google Scholar 

  13. Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611 (1997)

    Article  CAS  PubMed Central  Google Scholar 

  14. Childress, A. R. et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18 (1999)

    Article  CAS  PubMed Central  Google Scholar 

  15. Wise, R. A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251 (1996)

    Article  CAS  PubMed Central  Google Scholar 

  16. Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991)

    Article  CAS  PubMed Central  Google Scholar 

  17. Einhorn, L. C., Johansen, P. A. & White, F. J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J. Neurosci. 8, 100–112 (1988)

    Article  CAS  PubMed Central  Google Scholar 

  18. Lacey, M. G., Mercuri, N. B. & North, R. A. Actions of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol. 99, 731–735 (1990)

    Article  CAS  PubMed Central  Google Scholar 

  19. Kiyatkin, E. A. & Rebec, G. V. Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J. Neurophysiol. 75, 142–153 (1996)

    Article  CAS  PubMed Central  Google Scholar 

  20. Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994)

    Article  CAS  PubMed Central  Google Scholar 

  21. Sesack, S. R. & Pickel, V. M. In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res. 527, 266–279 (1990)

    Article  CAS  PubMed Central  Google Scholar 

  22. Sesack, S. R. & Pickel, V. M. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320, 145–160 (1992)

    Article  CAS  PubMed Central  Google Scholar 

  23. Mogenson, G. J. Limbic-motor integration. Prog. Psychobiol. Physiol. Psychol. 12, 117–170 (1987)

    Google Scholar 

  24. Carelli, R. M. The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav. Cogn. Neurosci. Rev. 1, 281–296 (2002)

    Article  PubMed Central  Google Scholar 

  25. Carelli, R. M., King, V. C., Hampson, R. E. & Deadwyler, S. A. Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Res. 626, 14–22 (1993)

    Article  CAS  PubMed Central  Google Scholar 

  26. Carelli, R. M. Activation of accumbens cell firing by stimuli associated with cocaine delivery during self-administration. Synapse 35, 238–242 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  27. Carelli, R. M., Ijames, S. G. & Crumling, A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus ‘natural’ (water and food) reward. J. Neurosci. 20, 4255–4266 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  28. Garris, P. A., Christensen, J. R. C., Rebec, G. V. & Wightman, R. M. Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J. Neurochem. 68, 152–161 (1997)

    Article  CAS  PubMed Central  Google Scholar 

  29. Marsden, C. A. et al. In vivo voltammetry—present electrodes and methods. Neuroscience 25, 389–400 (1988)

    Article  CAS  PubMed Central  Google Scholar 

  30. Millar, J., Stamford, J. A., Kruk, Z. L. & Wightman, R. M. Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur. J. Pharmacol. 109, 341–348 (1985)

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Roitman, D. Robinson, R. Gainetdinov, P. Garris and S. Grigson for useful comments, and J. Venton, J. Peterson, C. McKinney, S. Brooks and J. Wondolowski for technical assistance. We also acknowledge the vision of R. Adams who set the foundation for this work. This work was supported by grants from the National Institute on Drug Abuse to R.M.W. and R.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina M. Carelli.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P., Stuber, G., Heien, M. et al. Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003). https://doi.org/10.1038/nature01476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing