Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes

Abstract

Although disrupted in schizophrenia 1 (DISC1) has been implicated in many psychiatric disorders, including schizophrenia, bipolar disorder, schizoaffective disorder and major depression, its biological role in these disorders is unclear. To better understand this gene and its role in psychiatric disease, we conducted transcriptional profiling and genome-wide association analysis in 1232 pedigreed Mexican-American individuals for whom we have neuroanatomic images, neurocognitive assessments and neuropsychiatric diagnoses. SOLAR was used to determine heritability, identify gene expression patterns and perform association analyses on 188 quantitative brain-related phenotypes. We found that the DISC1 transcript is highly heritable (h2=0.50; P=1.97 × 10−22), and that gene expression is strongly cis-regulated (cis-LOD=3.89) but is also influenced by trans-effects. We identified several DISC1 polymorphisms that were associated with cortical gray matter thickness within the parietal, temporal and frontal lobes. Associated regions affiliated with memory included the entorhinal cortex (rs821639, P=4.11 × 10−5; rs2356606, P=4.71 × 10−4), cingulate cortex (rs16856322, P=2.88 × 10−4) and parahippocampal gyrus (rs821639, P=4.95 × 10−4); those affiliated with executive and other cognitive processing included the transverse temporal gyrus (rs9661837, P=5.21 × 10−4; rs17773946, P=6.23 × 10−4), anterior cingulate cortex (rs2487453, P=4.79 × 10−4; rs3738401, P=5.43 × 10−4) and medial orbitofrontal cortex (rs9661837; P=7.40 × 10−4). Cognitive measures of working memory (rs2793094, P=3.38 × 10−4), as well as lifetime history of depression (rs4658966, P=4.33 × 10−4; rs12137417, P=4.93 × 10−4) and panic (rs12137417, P=7.41 × 10−4) were associated with DISC1 sequence variation. DISC1 has well-defined genetic regulation and clearly influences important phenotypes related to psychiatric disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  2. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  3. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  4. Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lonnqvist J et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry 2004; 9: 1037–1041.

    Article  CAS  PubMed  Google Scholar 

  5. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  6. Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N et al. Genome-wide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 2005; 62: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  7. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saetre P, Agartz I, De Franciscis A, Lundmark P, Djurovic S, Kahler A et al. Association between a disrupted-in-schizophrenia 1 (DISC1) single nucleotide polymorphism and schizophrenia in a combined Scandinavian case-control sample. Schizophr Res 2008; 106: 237–241.

    Article  PubMed  Google Scholar 

  9. Hennah W, Thomson P, McQuillin A, Bass N, Loukola A, Anjorin A et al. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 2009; 14: 865–873.

    Article  CAS  PubMed  Google Scholar 

  10. Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P et al. Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 2007; 16: 2517–2528.

    Article  CAS  PubMed  Google Scholar 

  11. Liu YL, Fann CS, Liu CM, Chen WJ, Wu JY, Hung SI et al. A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: association with impairment of sustained attention. Biol Psychiatry 2006; 60: 554–562.

    Article  CAS  PubMed  Google Scholar 

  12. Perlis RH, Purcell S, Fagerness J, Kirby A, Petryshen TL, Fan J et al. Family-based association study of lithium-related and other candidate genes in bipolar disorder. Arch Gen Psychiatry 2008; 65: 53–61.

    Article  PubMed  Google Scholar 

  13. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–668, 616.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet 2006; 15: 3024–3033.

    Article  CAS  PubMed  Google Scholar 

  15. Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R et al. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatry 2008; 13: 187–196.

    Article  CAS  PubMed  Google Scholar 

  16. Di Giorgio A, Blasi G, Sambataro F, Rampino A, Papazacharias A, Gambi F et al. Association of the SerCys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. Eur J Neurosci 2008; 28: 2129–2136.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim HJ, Park HJ, Jung KH, Ban JY, Ra J, Kim JW et al. Association study of polymorphisms between DISC1 and schizophrenia in a Korean population. Neurosci Lett 2008; 430: 60–63.

    Article  CAS  PubMed  Google Scholar 

  18. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T et al. A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 2005; 10: 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  19. Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM et al. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005; 16: 1399–1402.

    Article  PubMed  Google Scholar 

  20. Thomson PA, Harris SE, Starr JM, Whalley LJ, Porteous DJ, Deary IJ . Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci Lett 2005; 389: 41–45.

    Article  CAS  PubMed  Google Scholar 

  21. Harris SE, Hennah W, Thomson PA, Luciano M, Starr JM, Porteous DJ et al. Variation in DISC1 is associated with anxiety, depression and emotional stability in elderly women. Mol Psychiatry 2010; 15: 232–234.

    Article  CAS  PubMed  Google Scholar 

  22. Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S et al. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 2006; 15: 1245–1258.

    Article  CAS  PubMed  Google Scholar 

  23. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  24. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  25. Hayesmoore JB, Bray NJ, Owen MJ, O′Donovan MC . DISC1 mRNA expression is not influenced by common Cis-acting regulatory polymorphisms or imprinting. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1065–1069.

    Article  CAS  PubMed  Google Scholar 

  26. Hennah W, Porteous D . The DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes. PLoS ONE 2009; 4: e4906.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  Google Scholar 

  28. Hattori T, Baba K, Matsuzaki S, Honda A, Miyoshi K, Inoue K et al. A novel DISC1-interacting partner DISC1-binding zinc-finger protein: implication in the modulation of DISC1-dependent neurite outgrowth. Mol Psychiatry 2007; 12: 398–407.

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation 1996; 94: 2159–2170.

    Article  CAS  PubMed  Google Scholar 

  30. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 1999; 64: 1127–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duggirala R, Mitchell BD, Blangero J, Stern MP . Genetic determinants of variation in gallbladder disease in the Mexican-American population. Genet Epidemiol 1999; 16: 191–204.

    Article  CAS  PubMed  Google Scholar 

  32. Kochunov P, Lancaster JL, Glahn DC, Purdy D, Laird AR, Gao F et al. Retrospective motion correction protocol for high-resolution anatomical MRI. Hum Brain Mapp 2006; 27: 957–962.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dale AM, Fischl B, Sereno MI . Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179–194.

    Article  CAS  PubMed  Google Scholar 

  34. Glahn DC, Almasy L, Barguil M, Hare E, Peralta JM, Kent Jr JW et al. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Arch Gen Psychiatry 2010; 67: 168–177.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59 (Suppl 20): 22–33;quiz 34–57.

    PubMed  Google Scholar 

  36. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007; 39: 1208–1216.

    Article  PubMed  Google Scholar 

  37. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heath SC . Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 1997; 61: 748–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boerwinkle E, Chakraborty R, Sing CF . The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet 1986; 50 (part 2): 181–194.

    Article  CAS  PubMed  Google Scholar 

  40. Blangero J, Goring HH, Kent Jr JW, Williams JT, Peterson CP, Almasy L et al. Quantitative trait nucleotide analysis using Bayesian model selection. Hum Biol 2005; 77: 541–559.

    Article  PubMed  Google Scholar 

  41. Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K, Chen H et al. Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry 2006; 60: 929–935.

    Article  PubMed  Google Scholar 

  42. Sachs NA, Sawa A, Holmes SE, Ross CA, DeLisi LE, Margolis RL . A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry 2005; 10: 758–764.

    Article  CAS  PubMed  Google Scholar 

  43. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 2005; 310: 1187–1191.

    CAS  PubMed  Google Scholar 

  44. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 1–5.

    Article  PubMed  Google Scholar 

  45. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  PubMed  Google Scholar 

  46. Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci USA 2010; 107: 8824–8829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  48. Schumacher J, Laje G, Abou Jamra R, Becker T, Muhleisen TW, Vasilescu C et al. The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet 2009; 18: 2719–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi T, Suzuki M, Tsunoda M, Maeno N, Kawasaki Y, Zhou SY et al. The disrupted-in-schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Res 2009; 172: 128–135.

    Article  CAS  PubMed  Google Scholar 

  50. Jung WH, Kim JS, Jang JH, Choi JS, Jung MH, Park JY et al. Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophr Bull 21 December 2009; e-pub ahead of print.

  51. Venkatasubramanian G, Jayakumar PN, Gangadhar BN, Keshavan MS . Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naive schizophrenia. Acta Psychiatr Scand 2008; 117: 420–431.

    Article  CAS  PubMed  Google Scholar 

  52. Baiano M, Perlini C, Rambaldelli G, Cerini R, Dusi N, Bellani M et al. Decreased entorhinal cortex volumes in schizophrenia. Schizophr Res 2008; 102: 171–180.

    Article  PubMed  Google Scholar 

  53. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee JY, Kim SJ et al. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 2006; 8: 65–74.

    Article  PubMed  Google Scholar 

  54. Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J et al. Cortical thinning in persons at increased familial risk for major depression. Proc Natl Acad Sci USA 2009; 106: 6273–6278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S . Smaller global and regional cortical volume in combat-related posttraumatic stress disorder. Arch Gen Psychiatry 2009; 66: 1373–1382.

    Article  PubMed  Google Scholar 

  56. Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH . Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010; 50: 589–599.

    Article  PubMed  Google Scholar 

  57. Julkunen V, Niskanen E, Muehlboeck S, Pihlajamaki M, Kononen M, Hallikainen M et al. Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer′s disease. Dement Geriatr Cogn Disord 2009; 28: 404–412.

    Article  PubMed  Google Scholar 

  58. Zola-Morgan S, Squire LR, Ramus SJ . Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 1994; 4: 483–495.

    Article  CAS  PubMed  Google Scholar 

  59. Sutherland RJ, Whishaw IQ, Kolb B . Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci 1988; 8: 1863–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 2002; 99: 523–528.

    Article  CAS  PubMed  Google Scholar 

  61. Coricelli G, Critchley HD, Joffily M, O'Doherty JP, Sirigu A, Dolan RJ . Regret and its avoidance: a neuroimaging study of choice behavior. Nat Neurosci 2005; 8: 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  62. Meguid N, Fahim C, Yoon U, Nashaat NH, Ibrahim AS, Mancini-Marie A et al. Brain morphology in autism and fragile × syndrome correlates with social IQ: first report from the Canadian-Swiss-Egyptian Neurodevelopmental Study. J Child Neurol 2010; 25: 599–608.

    Article  PubMed  Google Scholar 

  63. Oliveira Jr PP, Nitrini R, Busatto G, Buchpiguel C, Sato JR, Amaro Jr E . Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease. J Alzheimers Dis 2010; 19: 1263–1272.

    Article  PubMed  Google Scholar 

  64. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC . Focal decline of cortical thickness in Alzheimer′s disease identified by computational neuroanatomy. Cereb Cortex 2005; 15: 995–1001.

    Article  PubMed  Google Scholar 

  65. Harms MP, Wang L, Campanella C, Aldridge K, Moffitt AJ, Kuelper J et al. Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. Br J Psychiatry 2010; 196: 150–157.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prasad KM, Goradia D, Eack S, Rajagopalan M, Nutche J, Magge T et al. Cortical surface characteristics among offspring of schizophrenia subjects. Schizophr Res 2010; 116: 143–151.

    Article  PubMed  Google Scholar 

  67. Goghari VM, Rehm K, Carter CS, MacDonald III AW . Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients. Cereb Cortex 2007; 17: 415–424.

    Article  PubMed  Google Scholar 

  68. Glahn DC, Therman S, Manninen M, Huttunen M, Kaprio J, Lonnqvist J et al. Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 2003; 53: 624–626.

    Article  PubMed  Google Scholar 

  69. Glahn DC, Bearden CE, Barguil M, Barrett J, Reichenberg A, Bowden CL et al. The neurocognitive signature of psychotic bipolar disorder. Biol Psychiatry 2007; 62: 910–916.

    Article  PubMed  Google Scholar 

  70. Glahn DC, Kim J, Cohen MS, Poutanen VP, Therman S, Bava S et al. Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex. Neuroimage 2002; 17: 201–213.

    Article  CAS  PubMed  Google Scholar 

  71. Cannon TD, Glahn DC, Kim J, Van Erp TG, Karlsgodt K, Cohen MS et al. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch Gen Psychiatry 2005; 62: 1071–1080.

    Article  PubMed  Google Scholar 

  72. Kent JM, Coplan JD, Mawlawi O, Martinez JM, Browne ST, Slifstein M et al. Prediction of panic response to a respiratory stimulant by reduced orbitofrontal cerebral blood flow in panic disorder. Am J Psychiatry 2005; 162: 1379–1381.

    Article  PubMed  Google Scholar 

  73. Sobanski T, Wagner G, Peikert G, Gruhn U, Schluttig K, Sauer H et al. Temporal and right frontal lobe alterations in panic disorder: a quantitative volumetric and voxel-based morphometric MRI study. Psychol Med 2010; 40: 1879–1886.

    Article  CAS  PubMed  Google Scholar 

  74. Smoski MJ, Felder J, Bizzell J, Green SR, Ernst M, Lynch TR et al. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord 2009; 118: 69–78.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by NIMH grants MH0708143 (PI: DC Glahn), MH078111 (PI: J Blangero) and MH083824 (PI: DC Glahn). SOLAR is supported by NIMH grant MH59490 (PI: J Blangero). Collection of family data and blood samples in the San Antonio Family Heart Study was supported by NHLBI program project grant P01 HL045522 (PI: J Blangero). We would like to thank the Azar and Shepperd families for their support of the transcriptional profiling. This investigation was conducted in facilities constructed with support from Research Facilities Improvement Program Grant Number C06 RR017515 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Carless.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carless, M., Glahn, D., Johnson, M. et al. Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes. Mol Psychiatry 16, 1096–1104 (2011). https://doi.org/10.1038/mp.2011.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.37

Keywords

This article is cited by

Search

Quick links