Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex

Abstract

The somatosensory (SI) cortex of mice displays a patterned, nonuniform distribution of neurons in layer IV called the 'barrelfield' ( ref. 1). Thalamocortical afferents (TCAs) that terminate in layer IV are segregated such that each barrel, a readily visible cylindrical array of neurons surrounding a cell-sparse center, represents a distinct receptive field. TCA arbors are confined to the barrel hollow and synapse on barrel-wall neurons whose dendrites are oriented toward the center of the barrel2. Mice homozygous for the barrelless (brl) mutation, which occurred spontaneously in ICR stock at Université de Lausanne (Switzerland), fail to develop this patterned distribution of neurons, but still display normal topological organization of the SI cortex3. Despite the absence of barrels and the overlapping zones of TCA arborization, the size of individual whisker representations, as judged by 2-deoxyglucose uptake, is similar to that of wild-type mice. We identified adenylyl cyclase type I (Adcy1) as the gene disrupted in brl mutant mice by fine mapping of proximal chromosome 11, enzyme assay, mutation analysis and examination of mice homozygous for a targeted disruption of Adcy1. These results provide the first evidence for involvement of cAMP signalling pathways in pattern formation of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic maps of proximal mouse chromosome 11.
Figure 2: Adenylyl cyclase activity in two-week wild-type and brl mutant mice.
Figure 3: Mutational analysis of Adcy1 in brl mutant mice.
Figure 4: Digitized images of layer IV of SI cortex from seven-month Adcy1 (a) and Adcy8 (b) knockout mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 ( 1970).

    Article  CAS  Google Scholar 

  2. Woolsey, T.A., Dierker, M.L. & Wann, F. Mouse SmI Cortex: Qualitative and quantitative classification of Golgi-impregnated Barrel neurons. Proc. Natl Acad. Sci. USA 72, 2165–2169 (1975).

    Article  CAS  Google Scholar 

  3. Welker, E. et al. Modified tactile processing in somatosensory cortex of a new mutant mouse, barrelless. Science 271, 1864– 1867 (1996).

    Article  CAS  Google Scholar 

  4. Copeland, N.G. et al. Genome Maps IV. Science 262, 67– 82 (1993).

    Article  CAS  Google Scholar 

  5. Edelhoff, S., Villacres, E.C., Storm, D.R. & Disteche, C.M. Mapping of adenylate cyclase genes type I, II, III, IV, V, VI in mouse. Mamm. Genome 6, 111–113 ( 1995).

    Article  CAS  Google Scholar 

  6. Xia, Z., Choi, E.J., Wang, F., Blazynski, C. & Storm, D.R. Type I Calmodulin-Sensitive Adenylate cyclase is neural specific. J. Neurochem. 60, 305– 311 (1993).

    Article  CAS  Google Scholar 

  7. Wu, Z., Wong, S.T. & Storm, D.R. Modification of the Ca2+/Calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J. Biol. Chem. 268, 23766–23768 (1993).

    CAS  Google Scholar 

  8. Wu, Z.L. et al. Altered behavior and long-term potentiation in type I adenylate cyclase mutant mice. Proc. Natl Acad. Sci. USA 92, 220– 224 (1995).

    Article  CAS  Google Scholar 

  9. Wayman, G.A., et al. Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J. Biol. Chem. 269, 25400–25405 (1994).

    CAS  Google Scholar 

  10. Villacres, E.C. et al. Developmentally expressed Ca2+-sensitive adenylate cyclase activity is disrupted in the brains of type I adenylate cyclase mutant mice . J. Biol. Chem. 270, 14352– 14357 (1995).

    Article  CAS  Google Scholar 

  11. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991).

    Article  CAS  Google Scholar 

  12. Mitreiter, K. et al. Disruption of the murine p53 gene by insertion of an endogenous retrovirus-like element (ETn) in a cell line from radiation-induced osteosarcoma. Virology 200, 837–841 ( 1994).

    Article  CAS  Google Scholar 

  13. Davis, R.L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299–317 ( 1996).

    Article  CAS  Google Scholar 

  14. Byrne, J.H. et al. Neural and molecular basis of nonassociative and associative learning in Aplysia . Ann. N. Y. Acad. Sci. 627, 124– 149 (1991).

    Article  CAS  Google Scholar 

  15. Yovell, Y. & Abrams, W. Temporal asymmetry inactivation of Aplysia adenylyl cyclase by calcium and transmitter may explain temporal requirements of conditioning. Proc. Natl Acad. Sci. USA 89, 6526–6530 (1992).

    Article  CAS  Google Scholar 

  16. Cases, O. et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763– 1766 (1995).

    Article  CAS  Google Scholar 

  17. Cases, O. et al. Lack of barrels in somatosensory cortex of Monoamine Oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

  18. Bennett-Clarke, C.A., Leslie, M.J., Lane, R.D. & Rhoades, R.W. Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat's somatosensory cortex. J. Neurosci. 14, 7594 –7607 (1994).

    Article  CAS  Google Scholar 

  19. Lebrand, C. et al. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17, 823–835 ( 1996).

    Article  CAS  Google Scholar 

  20. Bennett-Clarke, C.A., Leslie, M.J., Chiaia, N.L. & Rhoades, R.W. Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons. Proc. Natl Acad. Sci. USA 90, 153–157 ( 1993).

    Article  CAS  Google Scholar 

  21. Bouhelal, R., Smounya, L. & Bockaert, J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substania nigra. Eur. J. Pharmacol. 151, 189–196 (1988).

    Article  CAS  Google Scholar 

  22. Rhoades, R.W., Bennett-Clark, C.A., Shi, M.-Y. & Mooney, R.D. Effects of 5-HT on thalamocortical synaptic transmission in the developing rat. J. Neurophysiol. 72, 2438–2450 (1994).

    Article  CAS  Google Scholar 

  23. Mitrovic, N., Mohajeri, H. & Schachner, M. Effects of NMDA receptor blockade in the developing rat somatosensory cortex on the expression of the glia-derived extracellular matrix glycoprotein tenascin-C . Eur. J. Neurosci. 8, 1793– 1802 (1996).

    Article  CAS  Google Scholar 

  24. Song, H-j., Ming, G-l . & Poo, M-m. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275– 279 (1997).

    Article  CAS  Google Scholar 

  25. Claudio, J.O., Malo, D. & Rouleau, G.A. The mouse neurofibromatosis type 2 gene is highly conserved. Genomics 21, 437–439 ( 1994).

    Article  CAS  Google Scholar 

  26. Dietrich, W.F. et al. A comprehensive genetic map of mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  Google Scholar 

  27. Larin, Z., Monaco, A.P., Meier-Ewert, S. & Lehrach, H. Construction and characterization of yeast artificial chromosome libraries from the mouse genome . Methods Enzymol. 225, 623– 637 (1993).

    Article  CAS  Google Scholar 

  28. Kusumi, K., Smith, J.S., Segre, J.A., Koos, D.S. & Lander, E.S. Construction of a large-insert yeast artificial chromosome library of the mouse genome. Mamm. Genome 4, 391–392 (1993).

    Article  CAS  Google Scholar 

  29. Haldi, M.L. et al. A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome. Mamm. Genome 7, 767–769 (1996).

    Article  CAS  Google Scholar 

  30. Johnson, R.A. & Sutherland, E.W. Detergent-dispersed adenylate cyclase from rat brain. J. Biol. Chem. 248, 5114–51121 (1973).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Blackadar, B. Cusack and K. Furue for technical assistance, and H. Lehrach and F.B. Palmer for support. This work has been supported by the Medical Research Council of Canada (grant MT-12941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Majid, R., Leong, W., Schalkwyk, L. et al. Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19, 289–291 (1998). https://doi.org/10.1038/980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing