Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The sensory nature of mnemonic representation in the primate prefrontal cortex

Abstract

A long-standing issue concerning the function of the primate dorsolateral prefrontal cortex is whether the activity of prefrontal neurons reflects the perceived sensory attributes of a remembered stimulus, or the decision to execute a motor response. To distinguish between these possibilities, we recorded neuronal activity from monkeys trained to make a saccade toward the brighter of two memoranda, under conditions of varied luminance. Our results indicated that during the delay period when sensory information was no longer available, neuronal discharge was modulated by the luminance of the stimulus appearing in the receptive field, and was directly correlated with psychophysical performance in the task. The findings suggest that although prefrontal cortex codes for a diversity of representations, including the decision for an impending response, a population of neurons maintains the dimensional attributes of remembered stimuli throughout the delay period, which allows for flexibility in the outcome of a mnemonic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macaque brain and behavioral task.
Figure 2: Single neuron responses were modulated by stimulus contrast.
Figure 3: Distractors evoked delay-period responses for most neurons tested.
Figure 4: Population responses were modulated by the luminance of the stimulus in the receptive field.
Figure 5: Probability of discrimination between a target and distractor was graded as a function of their contrast ratio.
Figure 6: Individual neuronal responses were dependent on contrast in a variable delay experiment.
Figure 7: Population responses for each contrast level in variable delay period experiment.
Figure 8: Model.

Similar content being viewed by others

References

  1. Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988).

    Article  CAS  Google Scholar 

  2. Baddeley, A. Working memory. Science 255, 556–559 (1992).

    Article  CAS  Google Scholar 

  3. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9, 100–110 (1963).

    Article  Google Scholar 

  4. Goldman-Rakic, P. S. in Handbook of Physiology (eds. Plum, F. & Mountcastle, V. B.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987).

    Google Scholar 

  5. Butters, N. & Pandya, D. Retention of delayed-alternation: effect of selective lesions of sulcus principalis. Science 165, 1271–1273 (1969).

    Article  CAS  Google Scholar 

  6. Levy, R. & Goldman-Rakic, P. S. Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J. Neurosci. 19, 5149–5158 (1999).

    Article  CAS  Google Scholar 

  7. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  CAS  Google Scholar 

  8. Kubota, K. & Niki, H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34, 337–347 (1971).

    Article  CAS  Google Scholar 

  9. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  10. Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  11. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    Article  CAS  Google Scholar 

  12. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).

    Article  CAS  Google Scholar 

  13. Ungerleider, L. G., Courtney, S. M. & Haxby, J. V. A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 95, 883–890 (1998).

    Article  CAS  Google Scholar 

  14. Adcock, R. A., Constable, R. T., Gore, J. C. & Goldman-Rakic, P. S. Functional neuroanatomy of executive processes involved in dual-task performance. Proc. Natl. Acad. Sci. USA 97, 3567–3572 (2000).

    Article  CAS  Google Scholar 

  15. Boussaoud, D. & Wise, S. P. Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp. Brain. Res. 95, 15–27 (1993).

    Article  CAS  Google Scholar 

  16. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).

    Article  CAS  Google Scholar 

  17. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).

    Article  CAS  Google Scholar 

  18. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  Google Scholar 

  19. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  Google Scholar 

  20. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  21. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  22. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol. 63, 814–831 (1990).

    Article  CAS  Google Scholar 

  23. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 65, 1464–1483 (1991).

    Article  CAS  Google Scholar 

  24. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).

    Article  CAS  Google Scholar 

  25. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    Article  CAS  Google Scholar 

  26. Hikosaka, K. & Watanabe, M. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb. Cortex 10, 263–271 (2000).

    Article  CAS  Google Scholar 

  27. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  Google Scholar 

  28. Sawaguchi, T. & Yamane, I. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. J. Neurophysiol. 82, 2070–2080 (1999).

    Article  CAS  Google Scholar 

  29. Niki, H. & Watanabe, M. Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res. 105, 79–88 (1976).

    Article  CAS  Google Scholar 

  30. Gottlieb, J. & Goldberg, M. E. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat. Neurosci. 2, 906–912 (1999).

    Article  CAS  Google Scholar 

  31. Constantinidis, C. & Steinmetz, M. A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76, 1352–1355 (1996).

    Article  CAS  Google Scholar 

  32. Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    Article  CAS  Google Scholar 

  33. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  34. Fuster, J. M., Bauer, R. H. & Jervey, J. P. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330, 299–307 (1985).

    Article  CAS  Google Scholar 

  35. Wilson, F. A., Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  Google Scholar 

  36. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  Google Scholar 

  37. Rainer, G. & Miller, E. K. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27, 179–189 (2000).

    Article  CAS  Google Scholar 

  38. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    Article  CAS  Google Scholar 

  39. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    Article  CAS  Google Scholar 

  40. Romo, R., Brody, C. D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    Article  CAS  Google Scholar 

  41. Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  42. Quintana, J. & Fuster, J. M. Mnemonic and predictive functions of cortical neurons in a memory task. Neuroreport 3, 721–724 (1992).

    Article  CAS  Google Scholar 

  43. Thompson, K. G., Bichot, N. P. & Schall, J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77, 1046–1050 (1997).

    Article  CAS  Google Scholar 

  44. Schall, J. D. & Thompson, K. G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  Google Scholar 

  45. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  CAS  Google Scholar 

  46. Owen, A. M. et al. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc. Natl. Acad. Sci. USA 95, 7721–7726 (1998).

    Article  CAS  Google Scholar 

  47. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  48. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Bernardo for technical assistance and D.T. Blake for his comments on a previous version of the manuscript. This work was supported by NIMH grant MH38546 to P.S.G.-R., fellowship MH11812 to M.N.F. and McDonnel-Pew Program in Cognitive Neuroscience Award to C.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Goldman-Rakic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinidis, C., Franowicz, M. & Goldman-Rakic, P. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4, 311–316 (2001). https://doi.org/10.1038/85179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing