Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two modes of radial migration in early development of the cerebral cortex

Abstract

Layer formation in the developing cerebral cortex requires the movement of neurons from their site of origin to their final laminar position. We demonstrate, using time-lapse imaging of acute cortical slices, that two distinct forms of cell movement, locomotion and somal translocation, are responsible for the radial migration of cortical neurons. These modes are distinguished by their dynamic properties and morphological features. Locomotion and translocation are not cell-type specific; although at early ages some cells may move by translocation only, locomoting cells also translocate once their leading process reaches the marginal zone. The existence of two modes of radial migration may account for the differential effects of certain genetic mutations on cortical development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confocal images of E15 cortical slices labeled with Oregon Green BAPTA AM.
Figure 2: Time-lapse images of a cell displaying somal translocation in an E14 cortical slice.
Figure 3: Translocating cells with branched, pial-directed processes in an E14 cortical slice.
Figure 4: Time-lapse imaging of a cell displaying presumptive glial-guided locomotion in an E14 cortical slice.
Figure 5: Migratory properties of somal translocation and presumed glial-guided locomotion.
Figure 6: Time-lapse images of locomoting cells displaying terminal somal translocation in E14 and E16 cortical slices.
Figure 7: Labeling of cells with translocating morphology in intact brain.

Similar content being viewed by others

References

  1. Caviness, V. S. Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Brain Res. Dev. Brain Res. 4, 293–302 (1982).

    Article  Google Scholar 

  2. Marin-Padilla, M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z. Anat. Entwicklungsgesch. 134, 117–145 (1971).

    Article  CAS  Google Scholar 

  3. Sheppard, A. M. & Pearlman, A. L. Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378, 173–179 (1997).

    Article  CAS  Google Scholar 

  4. Luskin, M. B. & Shatz, C. J. Neurogenesis of the cat's primary visual cortex. J. Comp. Neurol. 242, 611–631 (1985).

    Article  CAS  Google Scholar 

  5. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972).

    Article  CAS  Google Scholar 

  6. O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).

    Article  CAS  Google Scholar 

  7. Pearlman, A. L., Faust, P. L., Hatten, M. E. & Brunstrom, J. E. New directions for neuronal migration. Curr. Opin. Neurobiol. 8, 45–54 (1998).

    Article  CAS  Google Scholar 

  8. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).

    Article  CAS  Google Scholar 

  9. Chae, T. et al. Mice lacking p35, a neuronal specific activator of cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  Google Scholar 

  10. Walsh, C. & Goffinet, A. Potential mechanisms of mutations that affect neuronal migration in man and mouse. Curr. Opin. Genet. Dev. 10, 270–274 (2000).

    Article  CAS  Google Scholar 

  11. Gleeson, J. G. & Walsh, C. A. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000).

    Article  CAS  Google Scholar 

  12. Book, K. J. & Morest, D. K. Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J. Comp. Neurol. 297, 55–76 (1990).

    Article  CAS  Google Scholar 

  13. Morris, N. R., Efimov, V. P. & Xiang, X. Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol. 8, 467–70 (1998).

    Article  CAS  Google Scholar 

  14. Book, K. J., Howard, R. & Morest, D. K. Direct observation in vitro of how neuroblasts migrate: medulla and cochleovestibular ganglion of the chick embryo. Exp. Neurol. 111, 228–43 (1991).

    Article  CAS  Google Scholar 

  15. Hendriks, R., Morest, D. K. & Kaczmarek, L. K. Role in neuronal cell migration for high-threshold potassium currents in the chicken hindbrain. J. Neurosci. Res. 58, 805–814 (1999).

    Article  CAS  Google Scholar 

  16. Hager, G., Dodt, H.-U., Sieglgansberger, W. & Liesi, P. Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res. 40, 207–219 (1995).

    Article  CAS  Google Scholar 

  17. Yee, K. T., Simon, H. H., Tessier-Lavigne, M. & O'Leary, D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24, 607–622 (1999).

    Article  CAS  Google Scholar 

  18. Gray, G. E. & Sanes, J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211–225 (1991).

    Article  CAS  Google Scholar 

  19. Snow, R. L. & Robson, J. A. Migration and differentiation of neurons in the retina and optic tectum of the chick. Exp. Neurol. 134, 13–24 (1995).

    Article  CAS  Google Scholar 

  20. Morest, D. K. A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130, 265–305 (1970).

    Article  CAS  Google Scholar 

  21. Brittis, P. A., Meiri, K., Dent, E. & Silver, J. The earliest pattern of neuronal differentiation and migration in the mammalian central nervous system. Exp. Neurol. 133, 1–12 (1995).

    Article  Google Scholar 

  22. Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).

    Article  CAS  Google Scholar 

  23. Komuro, H. & Rakic, P. Dynamics of granule cell migration: a confocal microscope study in acute cerebellar slice preparations. J. Neurosci. 15, 1110–1120 (1995).

    Article  CAS  Google Scholar 

  24. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J. Neurosci. 15, 5762–5776 (1996).

    Article  Google Scholar 

  25. Gan, W.-B., Grutzendler, J., Wong, W. T., Wong, R. O. L. & Lichtman, J. Multicolor “DiOlistic” labeling of the nervous system using lipohilic dye combinations. Neuron 27, 219–225 (2000).

    Article  CAS  Google Scholar 

  26. Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).

    Article  CAS  Google Scholar 

  27. Fonseca, M., Del Rio, J. A., Martinez, A., Gomez, S. & Soriano, E. Development of calretinin immunoreactivity in the neocortex of the rat. J. Comp. Neurol. 361, 177–192 (1995).

    Article  CAS  Google Scholar 

  28. Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning. J. Cell Sci. 111, 2283–2295 (1998).

    CAS  PubMed  Google Scholar 

  29. Rakic, P., Knyihar-Csillik, E. & Csillik, B. Polarity of microtubule assemblies during neuronal migration. Proc. Natl. Acad. Sci. USA 93, 9218–9222 (1996).

    Article  CAS  Google Scholar 

  30. Rivas, R. J. & Hatten, M. E. Motility and cytoskeleton organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    Article  CAS  Google Scholar 

  31. Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405 (1935).

    Article  Google Scholar 

  32. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  33. Horwitz, A. R. & Parsons, J. T. Cell migration—movin' on. Science 286, 1102–1103 (1999).

    Article  CAS  Google Scholar 

  34. Cameron, R. S., Ruffin, J. W., Cho, N. K., Cameron, P. L. & Rakic, P. Developmental expression, pattern of distribution, and effect on cell aggregation implicate a neuron-glial junctional domain protein in neuronal migration. J. Comp. Neurol. 387, 467–488 (1997).

    Article  CAS  Google Scholar 

  35. Anton, E. S., Cameron, R. S. & Rakic, P. Role of neuron-glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall. J. Neurosci. 16, 2283–2293 (1996).

    Article  CAS  Google Scholar 

  36. Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of alpha-3 and alpha-v integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289 (1999).

    Article  CAS  Google Scholar 

  37. Kakita, A. & Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).

    Article  CAS  Google Scholar 

  38. Marin-Padilla, M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol. 152, 109–126 (1978).

    Article  CAS  Google Scholar 

  39. Goffinet, A. M. The embryonic development of the cortical plate in reptiles: a comparative study in emys orbicularis and lacerta agilis. J. Comp. Neurol. 246, 437–452 (1983).

    Article  Google Scholar 

  40. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  Google Scholar 

  41. Walsh, C. A. Genetic malformations of the human cerebral cortex. Neuron 23, 19–29 (1999).

    Article  CAS  Google Scholar 

  42. Dulabon, L. et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000).

    Article  CAS  Google Scholar 

  43. Pinto-Lord, M. C., Evrard, P. & Caviness, V. S. Jr. Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain. Res. Dev. Brain Res. 4, 379–393 (1982).

    Article  Google Scholar 

  44. Nikolic, M., Chou, M. M., Lu, W. G., Mayer, B. J. & Tsai, L. H. The P35/Cdk5 kinase is a neuron-specific rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).

    Article  CAS  Google Scholar 

  45. Wada, Y. et al. Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by cdk5 decreases its microtubule nucleation activity. J. Biochem. (Tokyo) 124, 738–746 (1998).

    Article  CAS  Google Scholar 

  46. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L. H. Regulation of N-cadherin-mediated adhesion by the p35-cdk5 kinase. Curr. Biol. 10, 363–372 (2000).

    Article  CAS  Google Scholar 

  47. Hatten, M. E. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. TINS 13, 179–184 (1990).

    CAS  PubMed  Google Scholar 

  48. Rakic, P., Cameron, R. S. & Komuro, H. Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4, 63–69 (1994).

    Article  CAS  Google Scholar 

  49. Sheppard, A. M. et al. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains. Dev. Biol. 172, 504–518 (1995).

    Article  CAS  Google Scholar 

  50. Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A. & Pearlman, A. L. Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18, 505–517 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Eye Institute (A.L.P and R.O.L.W.), the National Institute of Neurological Diseases and Stroke (J.E.B and A.L.P.) the McDonnell Center for Cellular and Molecular Neurobiology of Washington University (J.E.B and A.L.P.), the National Institute of Aging (J.G.) and fellowship support from the Wellcome Trust (B.N.). We thank F. Branch, D. Bryant, B. Kay and D. Oakley for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan L. Pearlman.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, B., Brunstrom, J., Grutzendler, J. et al. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4, 143–150 (2001). https://doi.org/10.1038/83967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing