Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamics of object-selective activation correlate with recognition performance in humans

Abstract

To investigate the relationship between perceptual awareness and brain activity, we measured both recognition performance and fMRI signal from object-related areas in human cortex while images were presented briefly using a masking protocol. Our results suggest that recognition performance is correlated with selective activation in object areas. Selective activation was correlated to object naming when exposure duration was varied from 20 to 500 milliseconds. Subjects' recognition during identical visual stimulation could be enhanced by training, which also increased the fMRI signal. Overall, the correlation between recognition performance and fMRI signal was highest in occipitotemporal object areas (the lateral occipital complex).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Masking experiment.
Figure 2: Object-selective regions and visual meridian representations.
Figure 3: Sensitivity of recognition and fMRI activation to object duration.
Figure 4: Training effect: psychophysics.
Figure 5: Training effect: brain activation.
Figure 6: Individual subjects time course data after training (scan 2).
Figure 7: Brain activation versus recognition.

Similar content being viewed by others

References

  1. Breitmeyer, B. G. Visual Masking: An Integrative Approach. (Oxford University Press, New York, 1984).

    Google Scholar 

  2. Kovacs, G., Vogels, R. & Orban, G. A. Cortical correlates of pattern backward masking. Proc. Natl. Acad. Sci. USA 92, 5587– 5591 (1995).

    CAS  PubMed  Google Scholar 

  3. Rolls, E. T. & Tovee, M. J. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc. R. Soc. Lond. B Biol. Sci. 257, 9–15 (1994).

    CAS  Google Scholar 

  4. Tovee, M. J. Neuronal processing. How fast is the speed of thought? Curr. Biol. 4, 1125–1127 ( 1994).

    CAS  PubMed  Google Scholar 

  5. Rolls, E. T., Tovee, M. J. & Panzeri, S. The neurophysiology of backward visual masking: information analysis. J. Cogn. Neurosci. 11, 300– 311 (1999).

    CAS  PubMed  Google Scholar 

  6. Bar, M. & Biederman, I. Localizing the cortical region mediating visual awareness of object identity. Proc. Natl. Acad. Sci. USA 96, 1790–1793 ( 1999).

    CAS  PubMed  Google Scholar 

  7. Vanni, S., Revonsuo, A., Saarinen, J. & Hari, R. Visual awareness of objects correlates with activity of right occipital cortex. Neuroreport 8, 183–186 ( 1996).

    CAS  PubMed  Google Scholar 

  8. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system Nature 381, 520–522 ( 1996).

    CAS  PubMed  Google Scholar 

  9. Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467– 470 (1998).

    CAS  PubMed  Google Scholar 

  10. Whalen, P. J. et al. A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    CAS  PubMed  Google Scholar 

  12. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191 –202 (1998).

    CAS  PubMed  Google Scholar 

  13. DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Functional magnetic resonance imaging (fMRI) of the human brain. J. Neurosci. Methods 54, 171–187 (1994).

    CAS  PubMed  Google Scholar 

  14. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525–525 (1994).

    CAS  PubMed  Google Scholar 

  15. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    CAS  PubMed  Google Scholar 

  16. Grill-Spector, K. et al. A sequence of object processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6, 316–328 (1998).

    CAS  PubMed  Google Scholar 

  17. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    CAS  PubMed  Google Scholar 

  18. Halgren, E. et al. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7, 29– 37 (1999).

    CAS  PubMed  Google Scholar 

  19. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382 –2386 (1996).

    CAS  PubMed  Google Scholar 

  20. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235– 241 (1998).

    CAS  PubMed  Google Scholar 

  21. Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. USA 95, 861–868 (1998).

    CAS  PubMed  Google Scholar 

  22. Buckner, R. L. & Koutstaal, W. Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proc. Natl .Acad. Sci. USA 95, 891–898 (1998).

    CAS  PubMed  Google Scholar 

  23. Furmanski, C. S. & Engel, S. A. Perceptual learning in object recognition: object specificity and size invariance. Vision Res. 40, 473–484 (2000).

    CAS  PubMed  Google Scholar 

  24. Dolan, R. J. et al. How the brain learns to see objects and faces in an impoverished context. Nature 389, 596– 599 (1997).

    CAS  PubMed  Google Scholar 

  25. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects . Nat. Neurosci. 2, 568– 573 (1999).

    CAS  PubMed  Google Scholar 

  26. Buckner, R. L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    CAS  PubMed  Google Scholar 

  27. Schacter, D. L. & Buckner, R. L. Priming and the brain. Neuron 20, 185– 195 (1998).

    CAS  PubMed  Google Scholar 

  28. Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G. & Parasuraman, R. Complementary neural mechanisms for tracking items in human working memory. Science 287, 643–646 (2000).

    CAS  PubMed  Google Scholar 

  29. Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269– 1272 (2000).

    CAS  PubMed  Google Scholar 

  30. Damasio, A. R., Tranel, D. & Damasio, H. Category-related recognition defects as a clue to the neural substrates of knowledge. Annu. Rev. Neurosci. 13, 89–109 (1990).

    CAS  PubMed  Google Scholar 

  31. Damasio, A. R. Category-related recognition defects as a clue to the neural substrates of knowledge. Trends Neurosci. 13, 95– 98 (1990).

    CAS  PubMed  Google Scholar 

  32. Farah, M. J., Klein, K. L. & Levinson, K. L. Face perception and within-category discrimination in prosopagnosia. Neuropsychologia. 33, 661–674 (1995).

    CAS  PubMed  Google Scholar 

  33. Moscovitch, M., Winocur, G. & Behrmann, M. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition . J. Cog. Neurosci. 9, 555– 604 (1999).

    Google Scholar 

  34. Halgren, E., Wilson, C. L. & Stapleton, J. M. Human medial temporal-lobe stimulation disrupts both formation and retrieval of recent memories. Brain Cogn. 4, 287–295 (1985).

    CAS  PubMed  Google Scholar 

  35. Puce, A., Allison, T. & McCarthy, G. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999).

    CAS  PubMed  Google Scholar 

  36. Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P. & Gore, J. C. Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Curr. Biol. 7, 645–651 ( 1997).

    CAS  PubMed  Google Scholar 

  37. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition Nat. Neurosci. 3, 191– 197 (2000).

    CAS  PubMed  Google Scholar 

  38. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J .V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 ( 1999).

    CAS  PubMed  Google Scholar 

  40. Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    CAS  PubMed  Google Scholar 

  41. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598 –601 (1998).

    CAS  PubMed  Google Scholar 

  42. Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    CAS  PubMed  Google Scholar 

  43. Allison, T., McCarthy, G., Nobre, A., Puce, A. & Belger, A. Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 4, 544–554 (1994).

    CAS  PubMed  Google Scholar 

  44. Chao, L .L., Haxby, J. V. & Martin, A. Attribute-based neural substrates in temporal cortex for processing and knowing objects. Nat. Neurosci. 2, 913–919 (1999).

    CAS  PubMed  Google Scholar 

  45. Moore, C. & Price, C. J. Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage 10 , 181–192 (1999).

    CAS  PubMed  Google Scholar 

  46. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. G. Neural correlates of perceptual awareness during binocular rivalry between faces and houses. Neuron 21, 753– 759 (1998).

    CAS  PubMed  Google Scholar 

  47. Rosier, A. M. et al. Regional brain activity during shape recognition impaired by a scopolamine challenge to encoding. Eur. J. Neurosci. 11, 3701–3714 (1999).

    CAS  PubMed  Google Scholar 

  48. Reyment, R. & Joreskog, K. Applied Factor Analysis in the Natural Sciences (Cambridge University Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  49. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

This study was funded by ISF 131/97 and GIF I567 grants. We thank E. Okon and O. Smikt for technical help. We thank M. Harel for assistance with the brain-flattening procedure. We thank G. Avidan-Carmel, U. Zohari and N. Kanwisher for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalanit Grill-Spector.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill-Spector, K., Kushnir, T., Hendler, T. et al. The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3, 837–843 (2000). https://doi.org/10.1038/77754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing