Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynactin increases the processivity of the cytoplasmic dynein motor

Abstract

Cytoplasmic dynein supports long-range intracellular movements of cargo in vivo but does not appear to be a processive motor protein by itself. We show here that the dynein activator, dynactin, binds microtubules and increases the average length of cytoplasmic-dynein-driven movements without affecting the velocity or microtubule-stimulated ATPase kinetics of cytoplasmic dynein. Enhancement of microtubule binding and motility by dynactin are both inhibited by an antibody to dynactin’s microtubule-binding domain. These results indicate that dynactin acts as a processivity factor for cytoplasmic-dynein-based motility and provide the first evidence that cytoskeletal motor processivity can be affected by extrinsic factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bead–microtubule-binding probability as a function of the molar ratio of cytoplasmic dynein:beads in the presence of ADP.
Figure 2: Motility characteristics of protein-coated beads in the presence of ATP.
Figure 3: Distributions of the duration of microtubule binding in the presence of ATP.
Figure 4: Effects of antibody incubation on bead motility in the presence of ATP.

Similar content being viewed by others

References

  1. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  2. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998).

    Article  CAS  Google Scholar 

  3. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  4. Block, S. M., Goldstein, L. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  Google Scholar 

  5. Hackney, D. D. The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol. 58, 731–750 (1996).

    Article  CAS  Google Scholar 

  6. Allan, V. Motor proteins: a dynamic duo. Curr. Biol. 6, 630–633 (1996).

    Article  CAS  Google Scholar 

  7. Karki, S. & Holzbaur, E. L. F. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  Google Scholar 

  8. Schroer, T. A. Structure and function of dynactin. Semin. Cell Dev. Biol. 7, 321–328 (1996).

    Article  CAS  Google Scholar 

  9. Schafer, D. A., Gill, S. R., Cooper, J. A., Heuser, J. E. & Schroer, T. A. Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles f-actin. J. Cell Biol. 126, 403–412 (1994).

    Article  CAS  Google Scholar 

  10. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. F. Centractin (Arp1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).

    Article  CAS  Google Scholar 

  11. Eckley, D. M. et al. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the Arp1 minifilament pointed end. J. Cell Biol. 147, 307–319 (1999).

    Article  CAS  Google Scholar 

  12. Karki, S. & Holzbaur, E. L. F. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 270, 28806–28811 (1995).

    Article  CAS  Google Scholar 

  13. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).

    Article  CAS  Google Scholar 

  14. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).

    Article  CAS  Google Scholar 

  15. Rickard, J. E. & Kreis, T. E. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 6, 178–183 (1996).

    Article  CAS  Google Scholar 

  16. Gill, S. R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115, 1639–1650 (1991).

    Article  CAS  Google Scholar 

  17. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at fibroblast centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  Google Scholar 

  18. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).

    Article  CAS  Google Scholar 

  19. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol. 107, 1001–1009 (1988).

    Article  CAS  Google Scholar 

  20. Shimizu, T., Toyoshima, Y. Y., Edamatsu, M. & Vale, R. D. Comparison of the motile and enzymatic properties of two microtubule minus-end-directed motors, ncd and cytoplasmic dynein. Biochemistry 34, 1575–1582 (1995).

    Article  CAS  Google Scholar 

  21. Holzbaur, E. L. F. & Johnson, K. A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  Google Scholar 

  22. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    Article  CAS  Google Scholar 

  23. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  Google Scholar 

  24. Takada, S. & Kamiya, R. Functional reconstitution of Chlamydomonas outer dynein arms from α-β and γ subunits: requirement of a third factor. J Cell Biol. 126, 737–745 (1994).

    Article  CAS  Google Scholar 

  25. Huang, C. F., Chang, C. B., Huang, C. & Farrell, J. E. Jr M phase phosphorylation of cytoplasmic dynein intermediate chain and p150Glued. J. Biol. Chem. 274, 14262–14269 (1999).

    Article  CAS  Google Scholar 

  26. Farshori, P. & Holzbaur, E. L. F. Dynactin phosphorylation is modulated in response to cellular effectors. Biochem. Biophys. Res. Commun. 232, 810–816 (1997).

    Article  CAS  Google Scholar 

  27. Niclas, J., Allan, V. J. & Vale, R. D. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol. 133, 585–593 (1996).

    Article  CAS  Google Scholar 

  28. Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991).

    Article  CAS  Google Scholar 

  29. Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998).

    Article  CAS  Google Scholar 

  30. Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 409–416 (1982).

    Article  CAS  Google Scholar 

  31. Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli: purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).

    CAS  PubMed  Google Scholar 

  32. Schnapp, B. J. Viewing single microtubules by video light microscopy. Methods Enzymol. 134, 561–573 (1986).

    Article  CAS  Google Scholar 

  33. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999).

    Article  CAS  Google Scholar 

  34. Vallee, R. B., Wall, J. S., Paschal, B. M. & Shpetner, H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature 332, 561–563 (1988).

    Article  CAS  Google Scholar 

  35. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Schroer laboratory for valuable discussions; and L. Ehler and the Schroer laboratory for critical reading of the manuscript. This work was supported by grants from the NIH to T.A.S (GM 44589) and to S.J.K. (F32 GM 19061).

Correspondence and requests for materials should be addressed to T.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trina A. Schroer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, S., Schroer, T. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2, 20–24 (2000). https://doi.org/10.1038/71338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing