Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells

Abstract

Olfactory perception is influenced by hormones. Here we report that adrenaline can directly affect the signal encoding of olfactory receptor cells. Application of adrenaline suppressed action potentials near threshold and increased their frequency in response to strong stimuli, resulting in a narrower dynamic range. Under voltage–clamp conditions, adrenaline enhanced sodium current and reduced T–type calcium current. Because sodium current is the major component of spike generation and T–type calcium current lowers the threshold in olfactory receptor cells, the effects of adrenaline on these currents are consistent with the results obtained under current–clamp conditions. Both effects involved a common cytoplasmic pathway, cAMP–dependent phosphorylation. We suggest that adrenaline may enhance contrast in olfactory perception by this mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adrenaline narrows the dynamic range of spike frequency in isolated ORCs.
Figure 2: Adrenaline augments INa in isolated ORCs.
Figure 3: Adrenaline inhibits ICa,T in isolated ORCs.
Figure 4: 8–bromo–cAMP augments INa and inhibits ICa,T.
Figure 5: Cyclic AMP augments INa and inhibits ICa,T via PKA.

Similar content being viewed by others

References

  1. Gold, G. H. & Nakamura, T. Cyclic nucleotide–gated conductances: a new class of ionic channels mediates visual and olfactory transduction. Trends Pharmacol. 8, 312– 316 (1987).

    Article  CAS  Google Scholar 

  2. Bakalyar, H. A. & Reed, R. R. The second messenger cascade in olfactory receptor neurons. Curr. Biol. 1, 204–208 (1991).

    Article  CAS  Google Scholar 

  3. Breer, H. & Boekhoff, I. Second messenger signalling in olfaction. Curr. Biol. 2, 439– 443 (1992).

    CAS  Google Scholar 

  4. Ronnett, G. V. & Snyder, S. H. Molecular messengers of olfaction. Trends Neurosci. 15, 508– 513 (1992).

    Article  CAS  Google Scholar 

  5. Firestein, S. Electrical signals in olfactory transduction. Curr. Biol. 2, 444–448 (1992).

    CAS  Google Scholar 

  6. Kurahashi, T. & Yau, K.–W. Tale of an unusual chloride current. Curr. Biol. 4, 256– 258 (1994).

    Article  CAS  Google Scholar 

  7. Restrepo, D., Teeter, J. H. & Schild, D. Second messenger signaling in olfactory transduction. J. Neurobiol. 30, 37–48 (1996).

    Article  CAS  Google Scholar 

  8. Takagi, S. F. in Human Olfaction (ed. Takagi, S. F.) 1–481 (Univ. of Tokyo Press, Tokyo, 1989).

    Google Scholar 

  9. Chen, Y., Getchell, T.V., Sparks, D. L. & Getchell, M. L. Patterns of adrenergic and peptidergic innervation in human olfactory mucosa: age–related trends. J. Comp. Neurol. 334, 104–116 (1993).

    Article  CAS  Google Scholar 

  10. Getchell, M. L. & Getchell, T. V. β–adrenergic regulation of the secretory granule content of acinar cells in olfactory glands of the salamander. J. Comp. Neurol. 155, 435–443 (1984).

    CAS  Google Scholar 

  11. Zielinski, B. S., Getchell, M. L., Wenokur, R. L. & Getchell, T. V. Ultrastructural localization and identification of adrenergic and cholinergic nerve terminals in the olfactory mucosa. Anat. Rec. 225, 232–245 (1989).

    Article  CAS  Google Scholar 

  12. Woodhead, C. J. & Nimmo, A. J. Beta adrenoceptors in human nasal mucosa. J. Laryngol. Otol. 105, 632–634 (1991).

    Article  CAS  Google Scholar 

  13. Beidler, L. M. in Sensory Communication (ed. Rosenblith, W. A.) 143– 157 (Wiley and MIT Press, New York, 1961).

    Google Scholar 

  14. Arechiga, C. & Alcocer, H. Adrenergic effects on electro–olfactogram. Exp. Med. Surg. 27, 384– 394 (1969).

    CAS  PubMed  Google Scholar 

  15. Kurahashi, T., Lowe, G. & Gold, G. H. Suppression of odorant responses by odorants in olfactory receptor cells. Science 265, 118– 120 (1994).

    Article  CAS  Google Scholar 

  16. Kawai, F., Kurahashi, T. & Kaneko, A. Nonselective suppression of voltage–gated currents by odorants in the newt olfactory receptor cells. J. Gen. Physiol. 109, 265–272 ( 1997).

    Article  CAS  Google Scholar 

  17. Firestein, S. & Werblin, F. S. Gating currents in isolated olfactory receptor neurons of the larval tiger salamander. Proc. Natl. Acad. Sci. USA 88, 6292–6296 ( 1987).

    Article  Google Scholar 

  18. Schild, D. Whole–cell currents in olfactory receptor cells on Xenopus laevis . Brain Res. 78, 223– 232 (1989).

    CAS  Google Scholar 

  19. Miyamoto, T., Restrepo, D. & Teeter, J. H. Voltage–dependent and odorant–regulated currents in isolated olfactory receptor neurons of the channel catfish. J. Gen. Physiol. 99, 505–530 (1992).

    Article  CAS  Google Scholar 

  20. Dubin, A. E. & Dionne, V. E. Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction. J. Gen. Physiol. 103, 181–201 (1994).

    Article  CAS  Google Scholar 

  21. Kawai, F., Kurahashi, T. & Kaneko, A. T–type Ca2+ channel lowers the threshold of spike generation in the newt olfactory receptor cell. J. Gen. Physiol. 108, 525–535 (1996).

    Article  CAS  Google Scholar 

  22. Kawai, F., Kurahashi, T. & Kaneko, A. Quantitative analysis of Na+ and Ca2+ current contributions on spike initiation in the newt olfactory receptor cell. Jpn. J. Physiol. 47, 367– 376 (1997).

    Article  CAS  Google Scholar 

  23. Lamb, T. D. & Pugh, E. N. Jr. G–protein cascade, gain and kinetics. Trends Neurosci. 15, 291–298 (1992).

    Article  CAS  Google Scholar 

  24. Hille, B. in Ionic Channels of Excitable Membranes (ed. Hille, B.) 170– 201 (Sinauer, Sunderland, 1992).

    Google Scholar 

  25. Hille, B. Modulation of ion–channel function of G–protein–coupled receptor. Trends Neurosci. 17, 531– 535 (1994).

    Article  CAS  Google Scholar 

  26. Seelig, T. L. & Kendig, J. J. Cyclic nucleotide modulation of Na+ and K+ currents in the isolated node of Ranvier. Brain Res. 245, 144– 147 (1982).

    Article  CAS  Google Scholar 

  27. Matsuda, J. J., Lee, H. & Shibata, E. F. Enhancement of rabbit cardiac sodium channels by β–adrenergic stimulation. Circ. Res. 70, 199– 207 (1991).

    Article  Google Scholar 

  28. Ono, K., Fozzard, H. A. & Hanck, D. A. Mechanism of cAMP–dependent modulation of cardiac sodium channel current kinetics. Circ. Res. 72, 807–815 (1992).

    Article  Google Scholar 

  29. Narahashi, T., Tsunoo, A. & Yoshii, M. Characterization of two types of calcium channels in mouse neuroblastoma cells J. Physiol. (Lond.) 383, 231–249 (1987).

    Article  CAS  Google Scholar 

  30. Pfeiffer–Linn, C. & Lasater, E. M. Dopamine modulates in a differential fashion T– and L–type calcium currents in bass retinal horizontal cells. J. Gen. Physiol. 102, 277–294 (1993).

    Article  Google Scholar 

  31. Kurahashi, T. Activation by odorants of cation–selective conductance in the olfactory receptor cells isolated from the newt. J. Physiol. (Lond.) 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  32. Getchell, T. V., Margolis, F. L. & Getchell, M. L. Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol. 23, 317– 345 (1985).

    Article  Google Scholar 

  33. Hall, L. J. & Jackson, R. T. Effects of alpha and beta adrenergic agonists on nasal blood flow. Ann. Otol. Rhinol. Laryngol. 77, 1120–1130 (1968).

    Article  CAS  Google Scholar 

  34. Pun, R. Y. K., Kleene, S. J. & Gesteland, R.C. Guanine nucleotides modulate steady–state inactivation of voltage–gated sodium channels in frog olfactory receptor neurons. J. Membr. Biol. 142, 103– 111 (1994).

    Article  CAS  Google Scholar 

  35. Lowe, G. & Gold, G. H. Nonlinear amplification by calcium–dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993).

    Article  CAS  Google Scholar 

  36. Kurahashi, T. The response induced by intracellular cyclic AMP in isolated olfactory receptor cells of the newt. J. Physiol. (Lond.) 430, 355–371 (1990).

    Article  CAS  Google Scholar 

  37. Kurahashi, T. & Kaneko, A. High density cAMP–gated channels at the ciliary membrane in the olfactory receptor cell. Neuroreport 2, 5–8 (1991 ).

    Article  CAS  Google Scholar 

  38. Kurahashi, T. & Kaneko, A. Gating properties of the cAMP–gated channel in toad olfactory receptor cells. J. Physiol. (Lond.) 466, 287–302 (1993).

    CAS  Google Scholar 

  39. Kurahashi, T. & Shibuya, T. Ca2+–dependent adaptive properties in the solitary olfactory receptor cells of newt. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  40. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    Article  CAS  Google Scholar 

  41. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch–clamp techniques for high resolution current recording from cells and cell–free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter Sterling, Robert Smith, Noga Vardi, Michael Freed, Loren Haarsma and Jonathan Demb for comments and support, Yoshikuni Ito for technical support and Akiko Kawai for secretarial assistance. This work was in part supported by grants from HFSPO and the Japanese MESSC (to TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kurahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, F., Kurahashi, T. & Kaneko, A. Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells. Nat Neurosci 2, 133–138 (1999). https://doi.org/10.1038/5686

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5686

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing