Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury

Abstract

Sensory stimuli to the body are conveyed by the spinal cord to the primary somatosensory cortex. It has long been thought that dorsal column afferents of the spinal cord represent the main pathway for these signals1–3, but the physiological and behavioural consequences of cutting the dorsal column have been reported to range from mild and transitory4–8 to marked9–13. We have re-examined this issue by sectioning the dorsal columns in the cervical region and recording the responses to hand stimulation in the contralateral primary somatosensory cortex (area 3b). Following a complete section of the dorsal columns, neurons in area 3b become immediately and perhaps permanently unresponsive to hand stimulation. Following a partial section, the remaining dorsal column afferents continue to activate neurons within their normal cortical target territories, but after five or more weeks the area of activation is greatly expanded. After prolonged recovery periods of six months or more, the deprived hand territory becomes responsive to inputs from the face (which are unaffected by spinal cord section). Thus, area 3b of somatosensory cortex is highly dependent on dorsal spinal column inputs, and other spinal pathways do not substitute for the dorsal columns even after injury.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mountcastle, V. B. Central nervous mechanisms in mechanoreceptive sensibility. In Handbook of Physiology—The Nervous System III (eds Darian-Smith, I) 789–878 (American Physiological Society, Bethesda, MD, 1984).

    Google Scholar 

  2. Tommerdahl, M. et al. Effects of spinal dorsal column transection on the response of monkey anterior parietal cortex to repetitive skin stimulation. Cerebral Cortex 6, 131–155 (1996).

    Article  CAS  Google Scholar 

  3. Beck, C. H. M. Dual dorsal columns: a review. Can. J. Neurol. Sci. 3, 1–7 (1976).

    Article  CAS  Google Scholar 

  4. Andersson, S. A., Finger, S. & Norrsell, U. Cerebral units activated by tactile stimuli via a ventral spinal pathway in primates. Acta Physiol. Scand. 93, 119–128 (1975).

    Article  CAS  Google Scholar 

  5. Eidelberg, E., Kreinick, C. J. & Langescheid, C. On the possible role of afferent pathways in skin sensation. Exp. Neurol 47, 419–432 (1975).

    Article  CAS  Google Scholar 

  6. Glendinning, D. S. & Vierck, C. J. Jr Lack of proprioceptive deficit after dorsal column lesions in monkeys. Neurology 43, 363–366 (1993).

    Article  CAS  Google Scholar 

  7. Wall, P. D. The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex. Brain 93, 505–524 (1970).

    Article  CAS  Google Scholar 

  8. Vierck, C. J. Jr Alterations of spatio-tactile discrimination after lesions of primate spinal cord. Brain Res. 58, 69–79 (1973).

    Article  Google Scholar 

  9. Dreyer, D. A., Schneider, R. J., Metz, C. B. & Whitsel, B. L. Differential contributions of spinal pathways to body representation in post central gyrus of Macaca mulatta. J. Neurophysiol. 37, 119–145 (1974).

    Article  CAS  Google Scholar 

  10. Glendinning, D. S., Vierck, J. C. J. & Cooper, B. Y. The effect of fasciculus cuneatus lesions on finger positioning and long latency reflexes in monkeys. Exp. Brain Res. 93, 104–116 (1993).

    Article  CAS  Google Scholar 

  11. Glendinning, D. S., Cooper, B. Y., Vierck, C. J. Jr & Leonard, C. M. Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions. Somatosens. Motor Res. 9, 61–73 (1991).

    Article  Google Scholar 

  12. Schneider, R. J. Loss of information concerning hair displacement and other somatic stimuli in the first somatic sensory cortex of unanesthetized macaca mulatta monkeys following dorsal funiculus transections. Exp. Brain Res. 83, 105–114 (1990).

    Article  CAS  Google Scholar 

  13. Vierck, C. J. Jr, Cohen, R. H. & Cooper, B. Y. Effects of spinal lesions on temporal resolution of cutaneous sensations. Somatosensory Res. 3, 45–56 (1985).

    Article  Google Scholar 

  14. Kaas, J. H. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosc. 14, 137–167 (1991).

    Article  CAS  Google Scholar 

  15. Merzenich, M. M. et al. Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation. Neuroscience 8, 33–55 (1983).

    Article  MathSciNet  CAS  Google Scholar 

  16. Kaas, J. H. What if anything is S1? The organization of the “first somatosensory area” of cortex. Physiol. Rev. 63, 206–231 (1983).

    Article  CAS  Google Scholar 

  17. Jain, N., Catania, K. C. & Kaas, J. H. An anatomical isomorph of the hand in somatosensory cortex of owl monkeys and its immutability following peripheral deafferentation. Soc. Neuro. Sci. Abstr 22, 1054 (1996).

    Google Scholar 

  18. Florence, S. L. & Kaas, J. H. Large-scale organization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J. Neurosci. 15, 8083–8095 (1995).

    Article  CAS  Google Scholar 

  19. Jain, N., Florence, S. L. & Kaas, J. H. Limits on plasticity in somatosensory cortex of adult rats: hindlimb cortex is not reactivated after dorsal column section. J. Neurophysiol. 73, 1537–1546 (1995).

    Article  CAS  Google Scholar 

  20. Florence, S. L., Wall, J. T. & Kaas, J. H. Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. J. Comp. Neurol. 286, 48–70 (1989).

    Article  CAS  Google Scholar 

  21. Merzenich, M. M., Kaas, J. H., Sur, M. & Lin, C. S. Double representation of the body surface within cytoarchitectonic areas 3b and 1 in ‘SI’ in the owl monkey (Aorus trivirgatus). J. Comp. Neurol. 181, 41–73 (1978).

    Article  CAS  Google Scholar 

  22. Florence, S. L., Wall, J. T. & Kaas, J. H. Central projections from the skin of the hand in squirrel monkeys. J. Comp. Neurol. 311, 563–578 (1991).

    Article  CAS  Google Scholar 

  23. Pons, T. P. et al. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252, 1857–1860 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Sweet, W. H. ‘Phantom’ sensations following intraspinal injury. Neurochirurgia 18, 139–154 (1975).

    CAS  PubMed  Google Scholar 

  25. Davis, R. W. Phantom sensation, phantom pain, and stump pain. Arch. Phys. Med. Rhabil. 74, 79–91 (1993).

    ADS  CAS  Google Scholar 

  26. Gallyas, F. Silver staining of myelin by means of physical development. Neurol. Res. 1, 203–209 (1979).

    Article  CAS  Google Scholar 

  27. Gibson, A. R., Hansama, D. I. & Robinson, F. R. A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res. 298, 235–241 (1984).

    Article  CAS  Google Scholar 

  28. Wong-Riley, M. T. T. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, N., Catania, K. & Kaas, J. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 386, 495–498 (1997). https://doi.org/10.1038/386495a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386495a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing