Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

From stimulus encoding to feature extraction in weakly electric fish

Abstract

ANIMALS acquire information about sensory stimuli around them and encode it using an analogue or a pulse-based code. Beha-viourally relevant features need to be extracted from this representation for further processing. In the electrosensory system of weakly electric fish, single P-type electroreceptor afferents accurately encode the time course of random modulations in electric-field amplitude1. We applied a stimulus estimation method2 and a signal-detection method to both P-receptor afferents and their targets, the pyramidal cells in the electrosensory lateral-line lobe. We found that although pyramidal cells do not accurately convey detailed information about the time course of the stimulus, they reliably encode up- and downstrokes of random modulations in electric-field amplitude. The presence of such temporal features is best signalled by short bursts of spikes, probably caused by dendritic processing, rather than by isolated spikes. Furthermore, pyramidal cells outperform P-receptor afferents in signalling the presence of temporal features in the stimulus waveform. We conclude that the sensory neurons are specialized to acquire information accurately with little processing, whereas the following stage extracts behaviourally relevant features, thus performing a nonlinear pattern-recognition task.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wessel, R., Koch, C. & Gabbiani, F. J. Neurophysiol. 75, 2280–2293 (1996).

    Article  CAS  Google Scholar 

  2. Bialek, W., de Ruyter van Steveninck, R. & Warland, D. Science 252, 1854–1857 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Zakon, H. in Electroreception (eds Bullock, T. H. & Heiligenberg, W.) 103–156 (Wiley, New York, 1986).

    Google Scholar 

  4. Bastian, J. in Electroreception (eds Bullock, T. H. & Heiligenberg, W.) 577–611 (Wiley, New York, 1986).

    Google Scholar 

  5. Hopkins, C. Annu. Rev. Neurosci. 11, 497–535 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Maler, L., Sas, E. & Rogers, J. J. Comp. Neurol. 195, 87–139 (1981).

    Article  CAS  Google Scholar 

  7. Hopkins, C. J. Comp. Physiol. A 111, 171–207 (1976).

    Article  Google Scholar 

  8. Bastian, J. & Heilgenberg, W. J. Comp. Physiol. A 136, 135–152 (1980).

    Article  Google Scholar 

  9. Turner, R., Plant, J. & Maler, L. J. Neurophysiol. 76, 2364–2382 (1996).

    Article  CAS  Google Scholar 

  10. Heiligenberg, W. Neural Nets in Electric Fish (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  11. Poor, H. An Introduction to Signal Detection and Estimation (Springer, New York, 1994).

    Book  Google Scholar 

  12. Gabbiani, F. & Koch, C. Neural Computat. 8, 44–66 (1996).

    Article  Google Scholar 

  13. Gabbiani, F. Network: Comp. Neural. Syst. 7, 61–85 (1996).

    Google Scholar 

  14. Lehky, S., Sejnowski, T. & Desimone, R. J. Neurosci. 12, 3568–3581 (1992).

    Article  CAS  Google Scholar 

  15. Anderson, T. W. An Introduction to Multivariate Statistical Analysis (Wiley, New York, 1984).

    MATH  Google Scholar 

  16. Turner, R. W., Maler, L., Deerinck, T., Levinson, S. R. & Ellisman, M. H. J. Neurosci. 14, 6453–6471 (1994).

    Article  CAS  Google Scholar 

  17. Maler, L. & Mugnaini, E. J. Comp. Neurol. 345, 224–252 (1994).

    Article  CAS  Google Scholar 

  18. Yuste, R. & Tank, W. Neuron 16, 701–716 (1996).

    Article  CAS  Google Scholar 

  19. Bair, W., Koch, C., Newsome, W. & Britten, K. J. Neurosci. 14, 2870–2892 (1994).

    Article  CAS  Google Scholar 

  20. Allen, C. & Stevens, C. Proc. Natl Acad. Sci. USA 91, 10380–10383 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Kawasaki, M., Rose, G. & Heiligenberg, W. Nature 336, 173–176 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Metzner, W. & Heiligenberg, W. J. Comp. Physiol. A 169, 135–150 (1991).

    Article  CAS  Google Scholar 

  23. Metzner, W. J. Neurosci. 13, 1862–1878 (1993).

    Article  CAS  Google Scholar 

  24. Maler, L, Sas, E., Johnston, S. & Ellis, W. J. Chem. Neuroanat. 4, 1–38 (1991).

    Article  CAS  Google Scholar 

  25. Bastian, J. & Courtright, J. J. Comp. Physiol. A 168, 393–397 (1991).

    Article  CAS  Google Scholar 

  26. Carr, C., Maler, L. & Sas, E. J. Comp. Neurol. 211, 139–153 (1982).

    Article  CAS  Google Scholar 

  27. Krueger, J. & Becker, J. Trends Neurosci. 14, 282–286 (1991).

    Article  Google Scholar 

  28. Jolliffe, I. Principal Component Analysis (Springer, New York, 1986).

    Book  Google Scholar 

  29. Raudys, S. & Jain, A. IEEE Trans. Patt. Anal. Mach. Intell. 13, 252–264 (1991).

    Article  Google Scholar 

  30. Shumway, C. J. Neurosci. 9, 4388–4399 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbiani, F., Metzner, W., Wessel, R. et al. From stimulus encoding to feature extraction in weakly electric fish. Nature 384, 564–567 (1996). https://doi.org/10.1038/384564a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384564a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing