Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis

Abstract

BIOLOGICAL time-series analysis is used to identify hidden dynamical patterns which could yield important insights into underlying physiological mechanisms. Such analysis is complicated by the fact that biological signals are typically both highly irregular and non-stationary, that is, their statistical character changes slowly or intermittently as a result of variations in background influences1–3. Previous statistical analyses of heartbeat dynamics4–6 have identified long-range correlations and power-law scaling in the normal heartbeat, but not the phase interactions between the different frequency components of the signal. Here we introduce a new approach, based on the wavelet transform and an analytic signal approach, which can characterize non-stationary behaviour and elucidate such phase interactions. We find that, when suitably rescaled, the distributions of the variations in the beat-to-beat intervals for all healthy subjects are described by a single function stable over a wide range of timescales. However, a similar scaling function does not exist for a group with cardiopulmonary instability caused by sleep apnoea. We attribute the functional form of the scaling observed in the healthy subjects to underlying nonlinear dynamics, which seem to be essential to normal heart function. The approach introduced here should be useful in the analysis of other nonstationary biological signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Prentice-Hall, Englewood Cliffs, NJ, 1994).

    MATH  Google Scholar 

  2. Shlesinger, M. F. Ann. NY Acad. Sci. 504, 214–228 (1987).

    Article  ADS  Google Scholar 

  3. Liebovitch, L. S. Biophys. J. 55, 373–377 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology (Oxford Univ. Press, New York, 1994).

    Book  Google Scholar 

  5. Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Chaos 5, 82–87 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Aghili, A. A., Rizwan-uddin, M., Griggin, P. & Moorman, J. R. Phys. Rev. Lett. 74, 1254–1257 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kitney, R. I., Linkens, D., Selman, A. C. & McDonald, A. H. Automedica 4, 141–153 (1982).

    Google Scholar 

  8. Panter, D. Modulation, Noise and Spectral Analysis (McGraw-Hill, New York, 1965).

    Google Scholar 

  9. Akselrod, S. et al. Science 213, 220–222 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Grossmann, A. & Morlet, J. Mathematics and Physics, Lectures on Recent Results (World Scientific, Singapore, 1985).

    MATH  Google Scholar 

  11. Daubechies, I. Comments Pure Appl. Math. 41, 909–996 (1988).

    Article  Google Scholar 

  12. Muzy, J. F., Bacry, E. & Arneodo, A. Int. J. Bifurc. Chaos 4, 245–302 (1994).

    Article  Google Scholar 

  13. Arneodo, A., Bacry, E., Graves, P. V. & Muzy, J. F. Phys. Rev. Lett. 74, 3293–3296 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Vainshtein, L. A. & Vakman, D. E. Separation of Frequencies in the Theory of Oscillations and Waves (Nauka, Moscow, 1983).

    Google Scholar 

  15. Gabor, D. J. Inst. Elect. Eng. 93, 429–457 (1946).

    Google Scholar 

  16. MIT-BIH Polysomnographic Database CD-ROM 2nd edn (MIT-BIH Database Distribution, Cambridge, 1992).

  17. Guilleminault, C., Connolly, S., Winkle, R., Melvin, K. & Tilkian, A. Lancet (1), 126–131 (1984).

    Article  CAS  Google Scholar 

  18. Stauffer, D. & Stanley, H. E. From Newton to Mandelbrot: A Primer in Theoretical Physics 2nd edn (Springer, Heidelberg, 1996).

    MATH  Google Scholar 

  19. Barabási, A.-L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  20. Kertész, J. & Vicsek, T. Fractals in Science (eds Bunde, A. & Havlin, S., (Springer, Heidelberg, 1994).

    Google Scholar 

  21. Stratonovich, R. L. Topics in the Theory of Random Noise Vol. I (Gordon & Breach, New York, 1981).

    Google Scholar 

  22. Lipsitz, L. A. et al. Br. Heart J. 74, 340–396 (1995).

    Article  Google Scholar 

  23. Gerstein, G. L. & Mandelbrot, B. B. Biophys. J. 4, 41–68 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, P., Rosenblum, M., Peng, CK. et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996). https://doi.org/10.1038/383323a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383323a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing