Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type

Abstract

COLOUR vision in humans and Old World monkeys begins with the differential activation of three types of cone photoreceptor which are maximally sensitive to short (S), medium (M) and long (L) wavelengths. Signals from the three cone types are relayed to the retinal ganglion cells via cone-specific bipolar cell types1–4. Colour-coding ganglion cells fall into two major physiological classes: the red–green opponent cells, which receive antagonistic input from M- and L-sensitive cones, and the blue–yellow opponent cells, which receive input from S-sensitive cones, opposed by combined M- and L-cone input. The neural mechanisms producing colour opponency are not understood. It has been assumed that both kinds of opponent signals are transmitted to the lateral geniculate nucleus by one type of ganglion cell, the midget cell5,6. We now report that a distinct non-midget ganglion cell type, the small bistratified cell, corresponds to the physiological type that receivesexcitatory input from S cones, the 'blue-on' cell. Our results thus demonstrate an anatomically distinct pathway that conveys S-cone signals to the brain. The morphology of the blue-on cell also suggests a novel hypothesis for the retinal circuitry underlying the blue–yellow opponent response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mariani, A. P. Nature 308, 184–186 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Kouyama, N. & Marshak, D. W. J. Neurosci. 3, 1233–1252 (1992).

    Article  Google Scholar 

  3. Boycott, B. B. & Wässle, H. Eur. J. Neurosci. 3, 1069–1088 (1991).

    Article  Google Scholar 

  4. Reid, R. C. & Shapley, R. M. Nature 356, 716–718 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Leventhal, A. G., Rodieck, R. W. & Dreher, B. Science 213, 1139–1142 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Perry, V. H., Oehler, R. & Cowey, A. Neuroscience 12, 1101–1123 (1984).

    Article  CAS  Google Scholar 

  7. De Monasterio, F. M. Brain Res. 166, 39–48 (1979).

    Article  CAS  Google Scholar 

  8. Zrenner, E., Nelson, R. & Mariani, A. Brain Res. 262, 181–185 (1983).

    Article  CAS  Google Scholar 

  9. Dacheux, R. F. & Raviola, E. Proc. R. Soc. B239, 213–230 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Dacey, D. M. Science 240, 1196–1198 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Swanson, W. H., Ueno, T., Smith, V. C. & Pokorny, J. J. opt. Soc. Am. A4, 1992–2005 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Famiglietti, E. V. Jr & Kolb, H. Science 194, 193–195 (1976).

    Article  ADS  Google Scholar 

  13. Lee, B. B., Martin, P. R. & Valberg, A. J. Physiol., Lond. 404, 323–347 (1988).

    Article  CAS  Google Scholar 

  14. Dacey, D. M. J. Neurosci. 13, 5334–5355 (1993).

    Article  CAS  Google Scholar 

  15. Rodieck, R. W. in From Pigments to Perception (eds Valberg, A. & Lee, B. B.) 83–94 (Plenum, New York, 1991).

    Book  Google Scholar 

  16. Dacey, D. M. Vis. Neurosci. 10, 1081–1098 (1993).

    Article  CAS  Google Scholar 

  17. Zrenner, E. & Gouras, P. Vision Res. 21, 1605–1609 (1981).

    Article  CAS  Google Scholar 

  18. De Monasterio, F. M. & Gouras, P. J. Physiol., Lond. 251, 167–195 (1975).

    Article  CAS  Google Scholar 

  19. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  20. Valberg, A., Lee, B. B. & Tigwell, D. A. Vision Res. 26, 1061–1064 (1986).

    Article  CAS  Google Scholar 

  21. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Mollon, J. D. J. exp. Biol. 146, 21–38 (1989).

    CAS  PubMed  Google Scholar 

  23. Mollon, J. D., Estevez, O. & Cavonius, C. R. in Vision: Coding and Efficiency (ed. Blakemore, C.) 119–131 (Cambridge Univ. Press, UK, 1990).

    Google Scholar 

  24. Schiller, P. H. & Malpeli, J. G. J. Neurophysiol. 41, 788–797 (1978).

    Article  CAS  Google Scholar 

  25. Ts'o, T. & Gilbert, C. J. Neurosci. 8, 1712–1727 (1988).

    Article  CAS  Google Scholar 

  26. Wyszecki, G. & Stiles, W. S. Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

    Google Scholar 

  27. Smith, V. C. & Pokorny, J. Vis. Res. 15, 161–171 (1975).

    Article  CAS  Google Scholar 

  28. Dacey, D. M. & Brace, S. Vis. Neurosci. 9, 279–290 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dacey, D., Lee, B. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994). https://doi.org/10.1038/367731a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367731a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing